A REMARK ON α_G -INVARIANT

KEWEI ZHANG

Let X be a smooth n-dimensional Fano variety. Let $G \subset \operatorname{Aut}(X)$ be an arbitrary subgroup. Then the α_G -invariant of X is defined by

$$\alpha_G(X) = \sup \left\{ \lambda \in \mathbb{Q} \mid \begin{array}{l} \text{the log pair } \left(X, \frac{\lambda}{m} \mathcal{D}\right) \text{ is log canonical for every} \\ \text{G-invariant linear system } \mathcal{D} \subset |-mK_X| \text{ and } \forall m \ge 1 \end{array} \right\}.$$

In this note, we prove the following

Proposition 0.1. Suppose that $G = N \rtimes_{\varphi} \Gamma$, where $\varphi : \Gamma \to \operatorname{Aut}(N)$ is the group homomorphism defining the semi-direct product between groups N and Γ . We assume that

- Γ is a finite group;
- for any N-invariant linear system $\mathcal{D} \subset |-mK_X|$, there always exists an N-invariant divisor $D \in \mathcal{D}$.

Then we have

$$\alpha_G(X) = \sup \left\{ \lambda \in \mathbb{Q} \mid \begin{array}{l} \text{the log pair } \left(X, \frac{\lambda}{m}D\right) \text{ is log canonical for every} \\ G\text{-invariant divisor } D \in |-mK_X| \text{ and } \forall m \ge 1 \end{array} \right\}.$$

Proof. Let $\mathcal{D} \subset |-mK_X|$ be any *G*-invariant linear system. So in particular, \mathcal{D} is *N*-invariant. Then by assumption we can find an *N*-invariant divisor $D \in \mathcal{D}$.

Now for any $\gamma \in \Gamma$, we claim that $\gamma(D) \in \mathcal{D}$ is also N-invariant. Indeed, for any point $y \in \gamma(D)$, there exists $x \in D$ such that $y = \gamma(x)$. So for any $h \in N$, we have

$$h(y) = h(\gamma(x)) = \gamma(\varphi(\gamma^{-1})(h)(x)) \in \gamma(D).$$

Thus $\gamma(D)$ is N-invariant as well.

Now we put $\widetilde{D} := \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \gamma(D)$. Then \widetilde{D} is *G*-invariant and

 $\operatorname{lct}(X,\widetilde{D}) \le \operatorname{lct}(X,\mathcal{D}).$

So it is enough to look at G-invariant divisors.

Example 0.2. We take $G = \mathbb{C}^* \rtimes \mathbb{Z}_2$. Note that any \mathbb{C}^* -invariant linear system must have a one-dimensional sub-representation. So the assumption of the Proposition is satisfied.