Analytic Thresholds,
Canonical metrics, and
Okountor bodies
Hewer Chang Beijing Normal University Feb. 2024.

Outline of my talk

- Motivation: canonical metrics
- Ding functional
- Analyicic/Valuative thresholds
- Relation with Okounkov bodies
\oint Motivation
- Kähler - Einstein problem

Let X be a cot Käbler mfd of $\operatorname{dim} n$.
Let ξ be a Käher class on X.
Question: Is there $\omega^{*} \in \xi$ sit.

$$
\begin{aligned}
& \text { Pic }\left(\omega^{*}\right)=\lambda \omega^{*} \quad \text { for some } \lambda \in \mathbb{R} \text { ? } \\
& c_{1}(x)=\lambda\{\omega\} \text {. }
\end{aligned}
$$

- The complex Mange - Ampere equation (X, ω) be cpt Käbler, of dimension $n . \quad d d^{d}=\frac{v_{1}+\overline{0}}{2 \pi}$.

Define $\mathcal{H}_{\omega}:=\left\{\varphi \in C^{\infty}(X, \mathbb{R}) \mid \omega_{\varphi}:=\omega+\operatorname{dd}^{2} \varphi>0\right\}$
Let $d V$ be a smooth volume form on X. The KE problem is related to the following equation.

$$
\begin{equation*}
\left(\omega+\operatorname{dd}^{c} \varphi\right)^{n}=e^{-\lambda \varphi} d V \tag{}
\end{equation*}
$$

- Known results for $\left(\omega+d d^{\prime} \varphi\right)^{n}=e^{-\lambda \varphi} d v$.
(1) $\lambda<0$: Aubin, Yam, 70 s
(2) $\lambda=0$: Yau, 7os (Calabi Conjecture)
(3) $\lambda>0$: There ane ofstructions!

Yau-Tian-Donaldson Coryecture: Solvability of $(*)_{\lambda}$ is velated to certain algebro- peometric stability" of the mfod (x, ω).

In what follows me assume $\lambda>0$
§ Ding functional

- Define for $\lambda>0$

$$
D^{\lambda}(\varphi)=-\frac{1}{\lambda} \log \int_{x} e^{-\lambda \varphi} d v-E(\varphi), \varphi \in \partial l_{\omega} .
$$

$$
E(y)=\frac{1}{(n+1) V} \int_{x} \varphi \sum_{i=0}^{n} \omega_{\varphi}^{i} \wedge \omega^{n-i}, \quad V=\int_{x} \omega^{n} .
$$

* If φ is a critical pt of D^{λ}, then
φ sones $\left(\omega+\operatorname{dd}^{2} \varphi\right)^{n}=e^{-\lambda \varphi} d V$.
- Properness

We say D^{λ} is proper/loercive if $\exists \varepsilon>0, C>0$ (Dawes dit.

$$
D^{\lambda}(\varphi) \geq \varepsilon(\sup \varphi-E(\varphi))-C \quad \text { for } \forall \varphi \in H_{\omega} \text {. }
$$

$\Delta \underline{T h m}$ (BEGZ variational principle $\left.+\begin{array}{c}\text { Srekeljpidi-Tosattii } \\ \text { regularity }\end{array}\right)$ If D^{λ} is proper, then $(*)_{\lambda}$ admits a C^{∞} solution
§ Analytic Thresholds
Moser-Trudinger type inequality,

- Tian's α-invariant

$$
\alpha(\{\omega\})=\sup \left\{\lambda>0 \mid \sup _{\varphi \in \lambda_{-}} \int_{X} e^{-\lambda(\varphi-\sup \varphi)} d V<+\infty\right\} .
$$

It only depenals on the Killer class $\{\omega\}$, and $\alpha(\{\omega\})>0$.

- Tan's criterion.
D^{λ} is proper for $\lambda<\frac{n+1}{n} \alpha(\{\omega\})$.
$\left(4\right.$ For $\lambda<\frac{n+1}{n} d$, one can solve $(*)_{\lambda}$.
- The (analytic) δ-invariant $(z, 2020)$

$$
\begin{array}{r}
\delta^{A}(\{\omega\})=\sup \left\{\lambda>0 \mid \sup _{\varphi \in H_{\omega}} \int_{x} e^{-\lambda(\varphi-E(\varphi))} d v<+\infty\right\} \\
\delta^{A}=1 \Rightarrow X \text { is } K \text { K-semistable } \\
p=1=1 \geqslant-C
\end{array}
$$

- Prop (Than-Zho, Thong Song-Sturn-Wlemkove, BBEG2) D^{λ} is proper of $\delta^{A}>\lambda$
- Fact: $\delta^{A} \geqslant \frac{n+1}{n} \alpha$ The prof is relatively cay, by using

This explains why Tian's criterion holds $\quad \begin{aligned} & x=\mathbb{P} \\ & \bar{s} \\ & =c,-k\end{aligned}$

$$
\bar{\xi}=c_{1}\left(-k_{x}\right)
$$

- Question : Do we have $\alpha \geqslant \frac{1}{n+1} \delta^{A}$? $\quad \frac{1}{n+1}$ is optimal. $(z, 2020)$

This is known to hold if $\omega \in C_{1}(L), L$ ample .(K.fuyita)
§ Valuative Thresholds.

- Let $Y \xrightarrow{\pi} X$ be a proper bimeromaphic mophdism and $E \subseteq Y$ be a prime divisor (reduced, irmeduathe of codicil). Such E is called a divisor over X.
E indues a valuation on $K(X)$:
For a meromophhic function f on X, can measure the order of zero/pole of f along E.
- There are several "functionals" associated to $E \subseteq Y$ Let ξ be a Kähler class on X.
Log discrepancy: $A_{X}(E):=1+\operatorname{ord}_{E}\left(K_{Y}-\pi^{*} K_{X}\right)$ psceudoeffective threshold: $\tau_{3}(E)=\sup \left\{x>0 \mid \pi^{*} \xi-x E\right.$ big $\}$ expected Lelong number: $S_{\xi}(E)=\frac{1}{V_{0}(\xi)} \int_{0}^{\tau_{\xi}(E)} V_{0} l\left(\pi^{*} \xi-x E\right) d x$
- Rok These notions are firsted doffed by algebraic peometois for projective mods, but they make sense for Killer mods as well.
- The valuative formulation of α-invariant

Prop: Let ξ be a Kähler class on X, then

Romp: When $\xi=c_{1}(L)$ for L ample, this was due to Demailly, The general case follows easily if one uses the valmative criterion of Bouchsom-Farre-Jonsson.

- The valuative δ - invariant:

$$
\delta(\xi):=\inf _{E / x} \frac{A_{x}(E)}{S_{\xi}(E)}
$$

$$
|\mathrm{mL}|
$$

$$
\delta_{m} \xrightarrow{m \rightarrow \infty} \delta
$$

- This invariant was first introduced by Frijita-Odaka in the Fans case and later further polished by Blum-Jonsson in the projective case.
- Conjecture: One has $\delta^{A}(\xi)=\delta(\xi)$ [$\mathrm{z}, 2000$)
for \forall Kabler class.
$B B J \cdot{ }^{18}{ }^{18} Z^{18}$
If X is Fane, $\xi=c_{1}\left(K_{x}\right)$. And $\delta\left(-k_{x}\right) \leq 1$.
Then $\delta\left(-K_{x}\right)=\delta^{A}\left(-K_{x}\right)=$ greatest Ricci lower bound
- Known results $H_{\omega} \leftarrow^{\text {Tin }} B_{a}, m \rightarrow \infty$.

$$
d_{\delta_{m}}=\delta_{m}^{A} \quad m \rightarrow \infty
$$

(1) $\left(Z,{ }^{2021}\right) \delta^{A}(\xi)=\delta(\xi)$ holds if $\xi=c_{1}(L)$ The proof relies on quatization methods going back t o Tran.
(2) (Darves-Z,2022)

For general Kähler class ξ, one has

$$
\delta(\xi)=\sup \left\{\lambda>0 \left\lvert\, \lim _{t \rightarrow \infty} \frac{D^{\lambda}\left(\varphi_{t}\right)}{t} \geqslant 0\right. \text { for } \forall_{-} \text {geodesic ray } \varphi_{t}\right\}
$$

This implies : $\delta^{A}(\xi) \leqslant \delta(\xi)$
The proof relies on pluripotential theory

- Consequence: We have an affirmative answer to the question:

$$
\alpha(\xi) \geqslant \frac{1}{n+1} \delta^{A}(\xi)
$$

Proof : It suffices to show $\delta^{A} \leqslant \delta$

$$
\alpha(\xi) \geqslant \frac{1}{n+1} \delta(\xi) E_{E} \frac{A}{\tau} \geqslant \frac{1}{n+1} \sum_{E} \frac{A}{S}
$$

It is enough to argue that When $\xi_{i}=a(L)$, fins was

$$
S_{3}(E) \geqslant \frac{1}{n+1} \tau_{\xi}(E) \text {. }{ }^{\text {observed by b. Fajita. }}
$$

- One can compare S and τ using Okounkov bodies !
- In our recent work [Darvas-Reboulet-Wit $\mathrm{N}_{\text {I }}$ atom- $\mathrm{K}_{\mathrm{k}}-2$] we established a theory of transcendental Okounkou bodies, which associates a convex body $\Delta \subseteq \mathbb{R}^{n}$ to a big class ξ sit.

$$
\operatorname{Vol}(\xi)=n!\quad V_{\theta} \mathbb{R}_{\mathbb{R}^{n}}(\Delta)
$$

- Given E over X, can construct Okourkov body \triangle in such a way:

Thanks for your attention!

