员几何课程

Lecture 1 . Holomorphic functions of several complex variables. $f(\overline{t}, \overline{t}) = 2 c \overline{t}$ υ

Outline (2 hours) 1. コ み う 2. Cauchy integral formula (dim 1 higher dim Pover series expansion 3. Holomorphic functions and their properties Weierstrass's convergence thm Cauchy's ineq. 4. Hartogs Theorem (Prove by solving J-equ) Max principle Identity theorem (exam) + bounded $f \in O(\mathbb{C}^n)$ Liouville's theorem (exam) nust be const. · 1 28 2 let $\Omega \subseteq \mathbb{C}^n$ be a domain (open & connected subset in \mathbb{C}^n) let (7', ..., 2") be the standard complex coordinates of C". Put Z' = X' + J. Z'. A Define 3 & 3 as follows. $\begin{cases} dz^{i} = dx^{i} + S_{i} dy^{i} \\ d\overline{z^{i}} = dx^{i} - S_{i} dy^{i} \end{cases} \text{ for } \forall i \leq i \leq n.$ $\begin{cases} \frac{\partial}{\partial z_i} := \frac{1}{2} \left(\frac{\partial}{\partial \chi_i} - \frac{\int}{\partial y_i} \right) \\ \frac{\partial}{\partial \overline{z}_i} := \frac{1}{2} \left(\frac{\partial}{\partial \chi_i} + \frac{\int}{\partial y_i} \right) \end{cases}$ Then $\partial := \sum_{i=1}^{n} \frac{\partial}{\partial z_i} \otimes dz_i$ しう:= デ ション める

· 2 Cauchy integral formula. When n=1, assume that I is a founded open set in € 5.4. DI consists of finitely many C' Jordan arrives. Then for + u∈ C'(Jb) we have $u(z_0) = \frac{1}{3\pi i} \left(\int_{\partial \Omega} \frac{u(z)}{z-z_0} dz + \int_{\Omega} \frac{\partial u}{\partial \overline{z}} \frac{dz}{dz \wedge d\overline{z}} \right) \text{for } \forall z_0 \in \Omega.$ pf: By definition $\int \int_{\Omega} \frac{\partial u}{\partial z} \frac{dz \wedge d\overline{z}}{(z - z_0)} = \lim_{z \to 0} \int_{\Omega} \frac{\partial u}{\partial z} \frac{dz \wedge d\overline{z}}{(z - z_0)}$ $=\lim_{\substack{z \neq 0 \\ y \neq 0}} \left[\frac{-\overline{\partial} (u dz)}{(z - \overline{z} 0)} = \lim_{\substack{z \neq 0 \\ y \neq 0}} \int \frac{-d (u dz)}{(\overline{z} - \overline{z} 0)} \right]$ $= \lim_{\substack{u \to 0}} \left(\int_{\partial Q_{1}(W_{1})} \frac{u \, d_{\overline{w}}}{\overline{v} - \overline{v}_{0}} - \int_{\partial Q_{1}} \frac{u \, d_{\overline{w}}}{\overline{v} - \overline{v}_{0}} \right)$ $= \lim_{\substack{\xi \neq 0 \\ \xi \neq 0}} \int \frac{u(\xi_0) d\xi}{\xi(\xi_0)} d\xi - \int \frac{u d\xi}{\xi(\xi_0)} d\xi$ = 27,5, 4020) - Sudz This completes the proof, 4

• The above formule has several consequences.
• When f is halomorphic (nor) one has

$$f(z_0) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{f(z)}{z_0 + z_0} dz$$
, which is the classical Caudy integral formule.
• When $f \in C_0^{\circ}(\Omega)$, then
 $f(z_0) = \frac{1}{2\pi i} \int_{\Omega} \frac{2f/z_0}{z_0 + z_0} dz dz$
 $\pi 21 = 3$ For general $\pi 21$, if f is holomorphic on $\{(z_1, ..., z_n) \in \mathbb{C}^n \mid 1z_0 | z_1, ..., n \} = : D_p$
then $f(z_0) = (\frac{1}{2\pi i})^n \int \dots \int \frac{f(z_0^1, ..., z_n) \in \mathbb{C}^n}{(z_0^1 - z_0^1)} dz^1 \dots dz^n \sum_{\substack{n=1 \ n < n}} f(z_0^1, ..., z_n) dx_n$
 $f(z_0^1) = (\frac{1}{2\pi i})^n \int \dots \int \frac{f(z_0^1, ..., z_n) (z_0^1 - z_0^1)}{(z_0^1 - z_0^1)} dz^1 \dots dz^n \sum_{\substack{n=1 \ n < n}} f(z_0^1, ..., z_n) dx_n$
 $f(z_0^1) = (\frac{1}{2\pi i})^n \int \dots \int \frac{f(z_0^1, ..., z_n) (z_0^1 - z_0^1)}{(z_0^1 - z_0^1)} dz^1 \dots dz^n} \int \frac{f(z_0^1, ..., z_n) dx_n}{f(z_0^1 + z_0^1)} dz^1 \dots dz^n$

• Thus. The following are equivalent
①
$$f \in O(\Omega)$$

② f satisfies the Couchy integral formula for \forall polydish $D, \in \Omega$.
③ $for $\forall \exists v \in \Omega$, \exists polydish D , around $\exists v \in t$.
 $f(z) = \sum_{i=1}^{n} \alpha_{i}(z - z_{0})^{v}$ namely f has a power series expansion
 $v \in N^{v}$, $\alpha_{v} = \frac{1}{2} \frac{\partial^{u} f}{\partial z_{v} \cdots \partial z_{v}} (z_{0}) =: D^{v} f(z_{0})$.
 e^{uut} In ③, α_{v} is given by
 $\alpha_{v} = \frac{1}{(z^{v} + z_{0})^{v}} \frac{\partial^{u} f}{\partial z_{v} \cdots \partial z_{v}} (z_{0}) =: D^{v} f(z_{0})$.
 $\alpha_{v} = (\pm i)^{v} \int_{1}^{\infty} \int_{1}^{\infty} \frac{f(z^{v} - z_{0})^{v}}{(z^{v} + z_{0})^{v} \cdots (z^{v} + z_{0})^{v}} \frac{dz^{v} - dz^{u}}{dz^{v} - dz^{u}} \frac{dz^{v} + dz^{u}}{dz^{v} + dz^{u}} \frac{dz^{v}}{dz^{v} + dz^{u}} \frac{dz^{v}}{dz^{u} + dz^{u}} \frac{dz^{$$

• The Weierstrass's Convergence Merrem. Let $\{f_k\} \subseteq O(\mathcal{R})$ be a sequence of hel. functions on \mathcal{R} there converges uniformly to a function f. Then $f \in O(\mathcal{R})$. $pf: f = \lim_{k} f_{k} = \lim_{k} \int \int \frac{f_{k}}{(s-2)} ds = \int \int \int \frac{f}{(s-2)} ds = hes power series expansion.$ • Then. For $f_1, f_2 \in O(\Omega)$, assume that for some $U \in \Omega$ $f_1|_U = f_2|_U$, then $f_1 = f_2$. f: Put N:={ ze R (.t. D'f, (z)= D'f, (z) for t've N'). Then N is clearly closed. & $U \subseteq N$. N is also open as $D^{\vee}f_1(z_2) = D^{\vee}f_2(z_0)$ implies that $f_1 = f_2$ around z_0 . Thus we must have N=R. \Box • Thun (Max principle). If f ∈ O(2) & ∃ Zo ∈ Q S.t. If I is locally maximized at Zo, then f is constant. pf 1. Consider complex lines through 20 & use max principle of 1-variable Pf 2 Using mean value formula of f & using the fact that If = Const => f= Const

• Then (Martogs then) Assume that
$$N \ge 2$$
.
Let Ω be a domain \mathscr{L} $K \subseteq \mathbb{R}$ a compact subset st. $\Omega \setminus K$ connected.
Then \forall fe $(O(\Omega) \setminus K)$ can be extended to a function $\widehat{f} \in O(\Omega)$
st. $\overline{g} = \widehat{g}$ on $\Omega \setminus K$.
• This is obviously not true when $n \ge 1$.
Pf. Choose a critic off function $q \in C^{\infty}(\Omega)$ st.
 $q \equiv 1$ on a nobed of K. Consider
 $f_{\alpha} := (1-q) f$. Then $f_{\alpha} \in C^{\infty}(\mathbb{C}^{n})$
Put $d := \widehat{J}f_{\alpha} = -\widehat{f}\widehat{J}q$, which is a C^{α}_{α} - (on form.
 $Obviously, \ \overline{\partial d} = 0$. If write $d = \sum_{i=1}^{n} di d\overline{z}i$
then $\frac{\partial di}{\partial \overline{z}_{i}} = \frac{\partial d\overline{z}}{\partial \overline{z}_{i}}$ for $\forall i : j$.
Put $U(\overline{z}) = \frac{1}{2\pi i} \iint_{\Omega} \frac{di(T, \overline{z}_{1}, ..., \overline{z}_{n})}{(T-\overline{z}_{1})} d\overline{z} nd\overline{z}$ for $\forall \overline{z} \in \mathbb{R}$.
 $= \frac{1}{2\pi i} \iint_{\Omega} \frac{di(T+z_{1}, \overline{z}_{2}, ..., \overline{z}_{n})}{(T-\overline{z}_{1})} d\overline{z} nd\overline{z}$ for \overline{w} denote formula.

Thus u solver Ju= a => J(fo-u)=0 $\Rightarrow \hat{f} := f_0 - \mathcal{U} \in \hat{\mathcal{O}}(\Omega)$ Notice that $\mathcal{U} = 0$ on an open subset of $\Omega \setminus K$, thus $\hat{f} = \hat{f}$ on an open $\int_{f_0}^{f_0} = \hat{f}$ subset of $\Omega \setminus K$ (as $\Omega \setminus K$ is connected) This completes the proof. • We end this lecture by giving the definition of meromorphic functions. f is called a meromorphic function on Ω if \exists open cover $\Omega = \bigcup \bigcup_{i}^{i}$ and $f_{i} \cdot g_{i} \in O(\bigcup_{i})$ s.t. $f = \frac{f_{i}}{g_{i}}$ on \bigcup_{i}^{i}