复几伍课程

Lecture 1 ．Holomorphic functions of several complex variables．

Outline (2 hours)

1. 2 \& $\bar{\partial}$
2. Cauchy integral formula $<\operatorname{dim}_{\text {higher }} 1$
3. Holomorphic functions and weir properties
4. Hartogs Theorem (Prove by solving $\bar{\partial}$-equ)

Pu e series expansion
Weierstrass's comergences tho
Cauchy's ines.
max principle
Identity theorem
Lionville's theorem (exam) ${ }^{\swarrow}$ bounded $f \in \mathcal{O}\left(\mathbb{C}^{n}\right)$
must be cost.

- 1 2\&

Let $\Omega \subseteq \mathbb{C}^{n}$ be a domain (open \& connected subset in \mathbb{C}^{n})
Let $\left(z^{\prime}, \cdots, z^{n}\right)$ be the standard complex coordinates of \mathbb{C}^{n}.
Put $z^{i}=x^{i}+J_{-1} y^{i}$.

- Define $\partial \& \bar{\partial}$ as follows.

$$
\left\{\begin{array} { l }
{ \frac { \partial } { \partial z ^ { i } } : = \frac { 1 } { 2 } (\frac { \partial } { \partial x ^ { i } } - \sqrt { - 1 } \frac { \partial } { \partial y ^ { i } }) } \\
{ \frac { \partial } { \partial \overline { z } ^ { i } } : = \frac { 1 } { 2 } (\frac { \partial } { \partial x ^ { i } } + \sqrt { 1 } \frac { \partial } { \partial y ^ { i } }) . }
\end{array} \text { \& } \left\{\begin{array}{l}
d z^{i}=d x^{i}+s_{1} d y^{i} \\
d \overline{z^{i}}=d x^{i}-s_{1} d y^{i}
\end{array} \text { for } \forall i \leq i \leq n\right.\right. \text {. }
$$

Then $\left\{\begin{array}{l}\partial:=\sum_{i=1}^{n} \frac{\partial}{\partial z^{i}} \otimes d z^{i} \\ \bar{\partial}:=\sum_{i=1}^{n} \frac{\partial}{\partial \bar{z}^{i}} \otimes d \overline{z^{i}}\end{array}\right.$

More concretely, for $\forall f \in C^{\prime}(\Omega, \mathbb{C})$, we have

$$
\left\{\begin{array}{l}
\partial f=\sum_{i} \frac{\partial f}{\partial z^{\prime}} d z_{i}=\frac{1}{2} \sum_{i}\left(\frac{\partial f}{\partial x^{i}} d x^{i}+\frac{\partial f}{\partial y_{i}} d y^{i}+\sqrt{1} \frac{\partial f}{\partial x^{\prime}} d y^{i}-\int_{1} \frac{\partial f}{\partial y^{i}} d x^{i}\right) . \\
\partial f=\sum_{i} \frac{\partial f}{\partial \overline{z^{2}}} d \overline{z^{i}}=\frac{1}{2} \sum_{i}\left(\frac{\partial f}{\partial x^{i}} d x^{i}+\frac{\partial f}{\partial y^{2}} d y^{i}+\sqrt{1} \frac{\partial f}{\partial y^{\prime}} d x^{i}-\sqrt{1} \frac{\partial f}{\partial x^{i}} d y^{i}\right)
\end{array}\right.
$$

Δ Observe that

$$
\partial f+\bar{\partial} f=d f=\sum_{i}\left(\frac{\partial f}{\partial x^{\prime}} d x^{i}+\frac{\partial f}{\partial y^{i}} d y^{i}\right) \text {. }
$$

Namely, $d=\partial+\bar{\partial}$

* We call $f \in C^{\prime}\left(\Omega, \mathbb{C}^{n}\right)$ holomorphic if f satisfies $\bar{\partial} f=0$, ie if we write $f=u+5 \cdot v$ then

$$
\begin{aligned}
& \sum_{i}\left(\frac{\partial u}{\partial x^{2}} d x^{i}+5 \frac{\partial v}{\partial x^{i}} d x^{i}+\frac{\partial u}{\partial y^{2}} d y^{i}+\sqrt{-1} \frac{\partial u}{\partial y^{i}} d y^{i}+5-\frac{\partial u}{\partial y^{2}} d x^{i}-\frac{\partial v}{\partial y^{i}} \cdot d x^{i}-5_{1} \frac{\partial u}{\partial x^{\prime}} d y^{i}+\frac{\partial v}{\partial x^{i}} \cdot d y^{i}\right)=0 \\
& \Leftrightarrow\left\{\begin{array}{l}
\frac{\partial u}{\partial x^{i}}=\frac{\partial v}{\partial y^{i}} \text { for } \forall 1 \leq i \leqslant n . \\
\frac{\partial u}{\partial y^{i}}=-\frac{\partial v}{\partial x^{i}}
\end{array}\right.
\end{aligned}
$$

This is called Cauchy-Priemenn equation.
In particular, if f is holomophic, then f is holomorphic in each complex variable (as a one-variable holomorphic (analytic function).

- 2 Cauchy integral formula.
Δ When $n=1$, assume that Ω is a bounded open set in \mathbb{C} s.t. $\partial \Omega$ consists of finitely many C^{\prime} Jordan curves. Then for $\forall u \in C^{\prime}(\bar{\Omega})$ we have

$$
u\left(z_{0}\right)=\frac{1}{2 \pi i}\left(\int_{\partial \Omega} \frac{u(z)}{z-z_{0}} d z+\iint_{\Omega} \frac{\partial u / \partial \bar{z}}{z-z_{0}} d z \wedge d \bar{z}\right) \text { for } \forall z_{0} \in \Omega
$$

Bf: By definition

$$
\begin{aligned}
\iint_{\Omega} \frac{\frac{\partial u}{\partial \bar{z}} d z \wedge d \bar{z}}{\left(z-z_{0}\right)} & =\lim _{\varepsilon \rightarrow 0} \iint_{\Omega \mid B_{\varepsilon}\left(z_{0}\right)} \frac{\frac{\partial u}{\partial z} d z \wedge d \bar{z}}{\left(z-z_{0}\right)} \\
& =\lim _{\varepsilon \rightarrow 0} \iint_{\Omega \mid B_{\varepsilon}\left(z_{0}\right)}^{\left(z-z z_{0}\right)}=\frac{-\bar{\partial}(u d z)}{\left(\lim _{\varepsilon \rightarrow 0} \iint_{\Omega\left(B_{\xi}\left(z_{0}\right)\right.} \frac{-d(u d z)}{\left(z-z_{0}\right)}\right.} \\
& =\lim _{\varepsilon \rightarrow 0}\left(\int_{\partial B_{\varepsilon}\left(z_{0}\right)} \frac{u d z}{z-z_{0}}-\int_{\partial \Omega} \frac{u d z}{z-z_{0}}\right) \\
& =\lim _{\varepsilon \rightarrow 0} \int_{\partial B_{\varepsilon}\left(z_{0}\right)} \frac{u\left(z_{0}\right) d z}{z-z_{0}}-\int_{\partial \Omega} \frac{u d z}{z-z_{0}} \\
& =2 \pi \sqrt{1} u\left(z_{0}\right)-\int_{\partial \Omega} \frac{u d_{z}}{z-z_{0}}
\end{aligned}
$$

This completes the proof,
-The above formula has several consequences.
(1) when f is holomorphic ($n=1$) one has

$$
f\left(z_{0}\right)=\frac{1}{2 \pi_{i}} \int_{2 \Omega} \frac{f(z)}{z-z_{0}} d z \text {, which is the classical Cauchy integral formula. }
$$

(2) When $f \in C_{0}^{\prime}(\Omega)$, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi_{i}} \iint_{\Omega} \frac{\partial f / \partial \bar{z}}{z-z_{0}} d z 1 d \bar{z}
$$

$n \geq 1$-(3) Tor general $n \geq 1$, if f is holomenppic on $\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}| | z_{i} \mid<r_{i}, i=1, \cdots, n\right\}=: \mathbb{D}_{r}$ then $\left.f(\xi)=\left(\frac{1}{2 m_{i}}\right)^{n} \int_{\left|z^{\prime}\right|=r_{1}} \cdots \int_{\left|z^{n}\right|=r_{n}} \frac{f\left(z^{\prime} \cdots, z^{n}\right)}{\left(z^{-}-\xi^{\prime}\right) \cdots\left(z^{n}-\xi^{n}\right)} d z^{\prime} \cdots d z^{n} \quad r=\left(r_{1}, \cdots, r_{n}\right)\left(R_{x}\right)^{n}\right)$ for $\forall \xi=\left(\xi^{n}, \cdots, \xi^{n}\right) \in \mathbb{D}_{r}$ This is the Cauchy integral formula for holomorphic functions of severed alex ard.

- Def: We put $O(\Omega):=\{$ holomorphic function on $\Omega\}$.
- Thu The following are equivalent
(1) $f \in \mathcal{O}(\Omega)$
(2) f satisfies the Cauchy integral formula for \forall polydisk $\mathbb{D}_{r} \subseteq \Omega$.
(3) For $\forall z_{0} \in \Omega, \exists$ poly disk D_{r} around z_{0} s.t.
$f(z)=\sum_{\nu \in \mathbb{N}^{n}} a_{\nu}\left(z-z_{0}\right)^{\nu}$ namely f has a power series expansion

$$
\begin{aligned}
& \begin{array}{l}
\text { of the choice of polydiss } \\
\text { as long as }|r|<1 \text {. }
\end{array}
\end{aligned}
$$

This follows from the taylor expansion

- Cor. If $\left\{\begin{array}{l}f(z)=\sum a_{\nu} z^{\nu} \\ g(t)=\sum b_{\nu} z^{\nu}\end{array} \quad\right.$ two convergent power series around $\quad 0 \in \mathbb{C}^{n}$
\& if $f=g$ over some small abhd $V \subseteq \mathbb{C}^{n}$ containing 0 then $a_{v}=b_{v}$.
(Since $a_{\nu} \& b_{v}$ are determined by the infinitesimal information of $f+g$ and.)
- Thu Weierstrass's Convergence theorem.

Let $\left\{f_{k}\right\} \subseteq O(\Omega)$ be a sequence of had functions on Ω that comvenges uniformly to a function f. Then $f \in O(\Omega)$.
Pf: $f=\lim f_{k}=\lim \iint \frac{f_{k}}{(\xi-z)} d \xi=\int \cdots \int \frac{f}{(\xi-z)} d \xi=$ has power series expansion.

- Thin For $f_{1}, f_{2} \in O(\Omega)$, assume that for solve $U \subseteq \Omega$ $f_{1} l_{u}=f_{2} l u$, then $f_{1}=f_{2}$.
㫙: Put $N:=\left\{z_{0} \in \Omega\right.$ rit. $D^{\nu} f_{1}\left(z_{0}\right)=D^{v} f_{2}\left(z_{0}\right)$ for $\left.\forall v \in \mathbb{N}^{n}\right\}$.
then N is clearly closed. \& $U \leq N$.
N is also open as $D^{V} f_{1}\left(z_{y}\right)=D^{V} f_{2}\left(z_{0}\right)$ implies that $f_{1}=f_{2}$ around z_{0}. Thus we must have $N=\Omega$.
-Thun Max principle). If $f \in O(\Omega) \& \exists z_{0} \in \Omega$ s.t. $|f|$ is locally maximized at z_{0}, then f is constant.
pf 1 . Consider complex limes through z_{0} \& use max principle of 1-variable
Pf 2 Using mean value formula of $f \&$ using the fort that $|f|=$ Cost $\Rightarrow f=\operatorname{con} y$.
- Thu (Hartogs thu) Assume that $n \geq 2$.

Let Ω be a domain $\& K \subseteq \Omega$ a compact subset st. $\Omega \backslash$ connected. Then $\forall f \in O(\Omega \backslash K)$ can be extended to a function $\hat{f} \in O(\Omega)$ st. $f=\hat{f}$ on $\Omega \backslash K$.
This is obviously not trave when $u=1$.
If: Choose a cutoff function $\varphi \in C^{\infty} \cdot(\Omega)$ s.t.
$\varphi \equiv 1$ on a unbid of K. Consider
$f_{0}:=(1-\varphi) f$. Then $f_{0} \in C_{0}^{\infty}\left(\mathbb{C}^{n}\right)$
Put $\alpha:=\bar{\partial} f_{0}=-f \bar{\partial} \varphi$, which is a $c_{0}^{\infty}-(0,1)$ form.
Obviously, $\bar{\partial} \alpha=0$. If write $\alpha=\sum_{i=1}^{n} \alpha_{i} d \overline{z^{i}}$
then $\frac{\partial \alpha_{i}}{\partial \bar{z} j}=\frac{\partial \alpha_{j}}{\partial \overline{z_{i}}}$ for $\forall i \cdot j$.
Put $u(z)=\frac{1}{2 \pi i} \iint_{\Omega} \frac{\alpha_{1}\left(\tau, z_{2}, \cdots, z_{n}\right)}{\left(\tau-z_{1}\right)} d \tau \wedge d \bar{\tau}$ for $\forall z \in \Omega$.

$$
=\frac{1}{2 \pi i} \iint_{\Omega} \frac{\alpha_{1}\left(\tau+z_{1}, z_{2}, \cdots, z_{n}\right)}{\tau} d \tau \wedge d \bar{\tau}
$$

So ir particular $u \in C_{0}^{\infty}$ \& we have

$$
\frac{\partial u(z)}{\partial \overline{z^{k}}}=\frac{1}{2 \pi i} \iint_{\Omega} \frac{\partial \partial_{k}\left(\tau, z_{2}, \cdots, z_{n}\right) / \partial \bar{\tau}}{\left(\tau-z_{1}\right)} d \tau \pi d \bar{\tau}=\alpha_{k}(z) \text { by Cauchy integral formula. }
$$

Thus u solves $\bar{\partial} u=\alpha \Rightarrow \hat{\partial}\left(f_{0}-u\right)=0$

$$
\Rightarrow \hat{f}:=f_{0}-u \in \mathcal{O}(\Omega)
$$

$\Rightarrow f:=f_{0}-u \in O(\Omega)$
Notice that $\left\langle\begin{array}{l}u=0 \\ f_{0}=f\end{array}\right.$ on an open subset of $\Omega \backslash K$, thus $\hat{f}=f$ on an open subset of $\Omega \backslash K$ \& hence $\hat{f}=f$ on $\Omega \backslash K$ (as $\Omega \backslash K$ is connected) This completes the proof.

- We end this lecture by giving the definition of meromorphic functions. f is called a meromorphic function on Ω if \exists open cover $\Omega=\left(U_{i}\right.$ and $f: g_{i} \in O\left(U_{i}\right)$ s.t. $f=\frac{f_{i}}{g_{i}}$ on $U_{\text {: }}$

