Lecture 3
Sheaf cohomology

Outline (1) exact sequence \& examples.
(2) resolution of sheaves
(3) cohomology \& examples.

- Recall Giver $y: \mathcal{F} \rightarrow G$
$\left\{\mathbb{O}^{y}\right.$ is ing.
(2) P_{x} is ing. for $\forall x \in X$
(b) $\varphi_{0}: y(U) \rightarrow G(U)$ ing. for $\forall U$.
(1) φ is surg.
(2) φ_{x} is surg. for $\forall x \in X$.
(3) $\forall \tau \in G(U) \exists$ open cover $U=U U_{i} \& \operatorname{si} \in \delta\left(U_{i}\right)$ Ct. $\left.\tau\right|_{U_{i}}=\varphi_{U_{i}}\left(s_{i}\right)$.
- We call $0 \rightarrow A \xrightarrow{\alpha} \beta \xrightarrow{\beta} \tau \rightarrow 0$ exact

If α ing, β sung. \& $\operatorname{ker} \beta=\operatorname{Im} \alpha$.
ie. $0 \rightarrow A_{x} \xrightarrow{\alpha_{x}} B_{\infty} \xrightarrow{\beta_{x}} C_{x} \rightarrow 0$ is an exact sequence.

- e.g.OLet $x:=\mathbb{C} . \beta:=\mathbb{Z}, B:=\Theta_{x} \& \quad c:=O_{x}^{*}$.
$A:$ constant sheaf. $B:=$ sheaf of holomorphic functions
$\tau:=$ sheaf of halomophic functions that is nowhere vanishing Then we have

$$
0 \rightarrow \mathbb{Z} \xrightarrow{i} O_{x} \xrightarrow{\exp }{O_{x}^{*} \rightarrow 0}^{*}
$$

Verify that this is exact.
(2) If A is a subsheap of B, then

$$
0 \rightarrow \beta \rightarrow \beta \rightarrow \beta / \nrightarrow B \rightarrow 0 \text { is exact. }
$$

(8) eg. $X:=C, B:=O_{X} . \quad A:=I_{0}$ idea shed of 0 then $(B / A)_{x}=\left\{\begin{array}{ll}C, & x=0 \\ 0, & x \neq 0\end{array}\right.$ this is a slyssanaper sheaf.
$\#\left(4 X=\mathbb{C}^{2}, Y:=\left\{z_{1}=0\right\}\right.$ let $I_{Y}:=$ sheaf of hold. functions vanish along chen $0 \rightarrow I_{Y} \rightarrow O_{X} \rightarrow O_{X} / I_{Y} \rightarrow 0$.
observe that $O_{X} / I_{Y} \cong O_{Y} . \begin{aligned} & \text { This exact sequence } \\ & \text { gives information for } \\ & \text { a }\end{aligned}$

- More generally, we say Y.

$$
\cdots \rightarrow \mathcal{K}_{1}^{0} \stackrel{\alpha_{0}}{\longrightarrow} \mathcal{S}^{1} \xrightarrow{\alpha_{1}} J^{2} \xrightarrow{\alpha_{2}} \ldots
$$

is a complex of sheaves if $\alpha_{i+1} \cdot \alpha_{i}=0$.
We say $0 \rightarrow \mathcal{K} \rightarrow \gamma^{\circ} \rightarrow f^{\prime} \rightarrow \cdots$
is a resolution of \mathcal{F} if this complex is exact.

- eg. Let M be a Rim mfd.

$$
\Omega^{i}:=\text { sheaf of } c^{\infty} i \text {-forms on } M \text {. }
$$

then $\Omega^{\circ}=$ sherif of C^{∞} functions on M.
Then $0 \rightarrow \mathbb{Z} \xrightarrow{i} \Omega^{0} \xrightarrow{d} \Omega^{d} \xrightarrow{d} \Omega^{2} \xrightarrow{d} \ldots$
is a resolution of the constant sheaf \mathbb{Z}.
 it is not exact at Ω°. exactness at Ω^{i} for $i=1$ follows from Poincare lemma

- e.g. $M C^{\infty}$ mfd. For $\forall U$ open let $S_{p}(U):=\left\{C^{\infty}\right.$ chains: linear combinations of $\left.\frac{\left.c^{\infty} \text { maps } f: \Delta^{p} \rightarrow U\right\}}{c^{\infty} \text { in a mhd of } \Delta^{p} \text {. }}\right\}$
Nate that $\left\{S_{p}(U)\right\}_{U}$ doesn't give rise to sheaves as there is no nafuration map $S_{p}(U) \rightarrow S_{p}(V)$ wherever $V \subseteq U$. But there is indeed an inclusion
$S_{p}(V) \hookrightarrow S_{p}(U)$ so it indues a restriction

$$
\operatorname{Hom}\left(S_{p}(U), R\right) \rightarrow H \operatorname{Hom}\left(S_{p}(V), R\right)
$$

Let $S^{P}(U):=\operatorname{Hom}\left(S_{p}(U), \mathbb{R}\right)$.
Then $\left\{S^{P}(U)\right\}_{U}$ actually gives rise to a sheaf on M The usual coboundary map $\delta: S^{P} \rightarrow S^{p+1}$ gives a resolution of the constant sheaf \mathbb{R}.

- Now, what is cohomology?

Given a short exact sequeme

$$
0 \rightarrow \& \rightarrow \beta \rightarrow \beta^{\alpha} \ell \rightarrow 0
$$

Then it is straightforward to show that the sequence

$$
0 \rightarrow A(x) \rightarrow B(x) \rightarrow e(x) \rightarrow 0
$$

is exact at $A(x) \nexists \mathcal{B}(x)$ but not at $C(x)$.
The cohomology group measomes the inexactness !

- Another example.
(1) Carven a surjection betureen two groups

$$
\varphi: G \rightarrow H
$$

For another group K, it is easy to see that φ induces an injection $\varphi^{*}: \operatorname{Hom}(H, K) \rightarrow \operatorname{Hom}(G, K)$.
(2) Now given an injection $p: G \hookrightarrow H$ it is not necessarily true that
$\varphi^{*}: \operatorname{Hom}(H, K) \rightarrow \operatorname{Hom}(G, K)$ is surjection.
So in general there are obstructions for a morphism $G \rightarrow K$ to extend to a mondhism $H \rightarrow K$.
(3) So in qeueral, whether something can be extended or whether Something is the restriction of something from a bigger space are both questions about "obstructions".
these are often related to cohomology theory!

- Axioms of sheaf cohomology.

Let X be a pdracompact Hausdorff space X. (so X has partition $\zeta \forall$ open cover admits a locally finite refinement? of amity) then for \forall sheaf f of abelion groups one can associate a sequence of groups $H^{q}(X, f)$ for $2 \geqslant 0$ sit.
(1) $H^{0}(X, F)=f(X)$
(3) If \mathcal{F} soft, then $H^{q}(X, f 1=0$ for all $q>0$
(3) For \forall sheaf mosphism $h: A \rightarrow \gamma S \exists$ for $\forall q \geqslant 0$ a group acoophism $h_{q}: H^{2}(X, A) \rightarrow H^{2}(X, B)$ sat.
functorality $h_{0}=h x: A(x) \rightarrow B(x)$.
$h_{q}=$ id if $h=$ id for $q \geqslant 0$
given $A \xrightarrow{h} \alpha 3 \xrightarrow{g} e$ owe has $g_{q} \circ \mathrm{kq}=(\mathrm{goh})_{q}$.
(4) For \forall short exact sequence

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

\exists group honiomouphison $\delta^{q}: H^{q}(x, \tau) \rightarrow H^{q+1}(x, A)$ sit. the indued sequence

$$
\begin{aligned}
\circ \rightarrow H^{2}(x, A) & \rightarrow H^{\circ}(x, \beta) \rightarrow H^{\circ}(x, C) \rightarrow H^{\prime}(x, A) \rightarrow H^{\prime}(x, B) \\
& \rightarrow \cdots H^{2}(x, A) \rightarrow H^{2}(x, B) \rightarrow H^{q}(x, C) \rightarrow H^{q}(x, A)+\cdots
\end{aligned}
$$

(5) A commutative diagram

$$
\begin{aligned}
& 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \\
& 0 \rightarrow A^{\prime} \rightarrow B^{\prime} \rightarrow C^{\prime} \rightarrow 0
\end{aligned}
$$

induces a connmurtative diagrams

$$
\begin{aligned}
& 0 \rightarrow H^{\circ}(X, A) \rightarrow H^{\circ}(X, B) \rightarrow H^{\circ}(X, E) \rightarrow H^{\prime}(X, A) \rightarrow \cdots \\
& \rightarrow H^{\circ}\left(X^{\downarrow}, A^{\prime}\right) \rightarrow H^{0}\left(x, B^{\prime}\right) \rightarrow H^{\circ}\left(X, E^{\prime}\right) \rightarrow H^{\prime}\left(X^{\downarrow}, A\right) \rightarrow \cdots
\end{aligned}
$$

$*$ Chm . Such coloomology theory exists \& is cenigue.

- Soft sheaf.
\triangle Def. A sheaf T is called soft if for \forall closed subset $K \subseteq X$, the restriction $f(X) \rightarrow J(K)=\lim _{0.5} f(0)$ is surjective.
Δ egg. The sheaf of continuous $/ C^{\prime} / C^{\infty}$ functions is soft. But the sheaf of holomorphic functions is not soft!
\triangle Let R be a sheaf of rings \& M a sheaf of R-modules Namely, each $M(U)$ is an $R(U)$-module.
If R is soft then M is also soft.
Δ Con. The sheet Ω^{p} of differential p-forms is soft.
- Thu . Let $0 \rightarrow \gamma \rightarrow \mathcal{F}^{0} \xrightarrow{\partial^{\circ}} \mathcal{F}^{\prime} \xrightarrow{\partial^{\prime}}$ … computation be a vesolution of \mathcal{F} s.t. \mathcal{F}^{i} is sof for all $i \geqslant 0$ of sheaf. Then consider the complex

$$
\circ \rightarrow \mathcal{J}^{\circ} \xrightarrow{\circ} \mathcal{J}_{q}^{\prime} \xrightarrow{\prime} \mathcal{J}^{2} \partial^{2} \ldots
$$

One has $\operatorname{ver} \frac{\partial^{q}}{\min } \partial^{q-1} \cong H^{q}(X, F) . \quad\left(\partial^{-1}=0\right)$

- Examples of sheaf cohomology groups.

We end this lecture by computing $H^{q}(M, R)$.

$$
\begin{aligned}
& 0 \rightarrow \mathbb{R} \rightarrow \Omega^{0} \xrightarrow{d} \Omega^{\prime} \xrightarrow{d} \Omega^{2} \rightarrow \cdots \text { (Sop resolution) } \\
& \text { then } H^{q}(X, R) \cong \frac{\operatorname{ker}\left(\Omega^{q} \xrightarrow{d} \Omega^{q+1}\right)}{\operatorname{In}\left(\Omega^{q} \xrightarrow{d} \Omega^{q}\right) .}
\end{aligned}
$$

On the oxher hand one also has

$$
0 \rightarrow \mathbb{R} \rightarrow S^{\circ} \stackrel{\delta}{\rightarrow} S^{1} \xrightarrow{\delta} \cdots \text { (this is also soft!) }
$$

then one finds that

$$
H^{q}(x, \mathbb{R}) \cong \frac{\operatorname{Ker}\left(S^{q} \xrightarrow{\delta} S^{q+1}\right)}{\operatorname{Zm}\left(S^{q-1} \xrightarrow{\delta} S^{q}\right)}
$$

This is exactly the de Rham theorem.
\#. Cech Cohomology. Let X be a topologicel space \& J a sheaf. Let us fix an open conering $X=\bigcup_{i \in I} U_{i}, w I$ an ordered set

$$
C^{p}\left(\left\{U_{i} J, \mathcal{F}\right):=\prod_{i_{0}<\cdots<i p} f\left(U_{i o} \ldots i p\right)\right.
$$

One can define a coboundery operator $d_{i} C^{p} \rightarrow C^{p+1}$ by: for $\forall \alpha=\pi \alpha_{i_{0} \ldots i_{p}} \in C^{p}$, define $d \alpha$ by putting

$$
(d \alpha)_{i_{0} \ldots i_{p+1}}:=\sum_{k=0}^{p+1}(-1)^{k} \alpha_{i},\left.\ldots \hat{i}_{k, \ldots, i_{p+1}}\right|_{U_{i_{0}} \ldots i_{p+1}}
$$

ex. Check that $d o d=0$.
$\forall \alpha \in C^{p}\left(\left\{U_{i}\right\}, \xi\right)$ wo $d \alpha$ is called a p-cochain $\{$ all the p-cochains $\}=: Z^{p}\left(\left\{U_{i}\right), J\right)$
$\forall \beta \in C^{P}\left(\left\{U_{i}\right\}, \mathcal{J}\right) \omega \bar{\omega} \beta=d \alpha$ for sone $\alpha \in C^{p-1}$ is p-cobounday. \{all p-coboundary $\}=: B^{P}\left(\left\{U_{i}, J\right\}\right)$.
Then define $\tilde{H}^{p}\left(\left\{v_{i}\right\}, f_{1}\right):=\frac{\operatorname{Ker}\left(C^{p} \xrightarrow{d} C^{p+1}\right)}{\operatorname{Sn}\left(C^{p-1} d C^{p}\right)}=\frac{Z^{p}}{B^{p}}$
Note that this construction did on the choice of $\left\{U_{i}\right\}$.
If $\left\{V_{j}\right\}$ is a refinement of $\left\{U_{i}\right\}$, then there is a natural map

$$
\text { Hf }\left\{\left(U_{i}\right\}, J\right) \longrightarrow \tilde{H}^{p}\left(\left\{V_{j}\right\}, j\right)
$$

Then one defines the Čech colomology wo specifying an open cover as

$$
\left.\bar{H}^{p}(X, \delta):=\underset{\longrightarrow}{\lim } \dot{H}^{p}(\{0:\},\}\right) .
$$

- For \forall open cover $\left\{U_{i}\right\}$, there is a natural homomophison

$$
\dot{H}^{p}(\{\cup,\}, \mathcal{F}) \rightarrow H^{p}(X, F),
$$

which is not necessarily bijective. But passing to the limit often result in isomorphisms (at least when X is peracompact) The upshot is \square One always has $H^{i}(X, F) \cong H^{i}(X, F)$ when $i=0,1$
(A) One has $\bar{H}^{i}(X, F) \cong H^{i}(X, F)$ for $i>1$ when X parapet.

So when X is a diff mfd, one has $\breve{H}^{i}\left(X, \mathcal{F}_{1}\right) \cong H^{i}(X, \mathcal{F}), \forall i \geqslant 0$.
Δ When X is a diff. mfd, one can always find a "good cover" $\left\{U_{i}\right\rangle$ sit. $\forall U_{i_{0} \ldots i_{p}}$ is contractible. In this case,

$$
H^{p}\left(\left\{U_{i}\right\rangle, \mathbb{R}\right) \cong H^{p}(X, \mathbb{R}) \text {. }
$$

More generally, for a sheaf F on X, if there is an open over $\left\{U_{i}\right\}$ s.t. $H^{q}\left(U_{i}, \ldots i p, \mathcal{F}\right)=0$ for $\forall q \geqslant 1, \forall U_{i_{0} \ldots i p}$ chen one has $\tilde{H} q\left(\left\{U_{i}\right), J\right) \cong H^{q}(X, f)$.
Such a cover is called Leray cover, which is quite useful to compute cohomology.

- Thu. Let X be a diff. mfd w/ the constant sheaf \mathbb{R}.

Then $H^{P}(X, \mathbb{R}) \cong H_{d R}^{P}(X, \mathbb{R})$
pf: We will look at the case $p=2$ to illustrate the ideas. The general cases follow in a similar manner.
(1) We will fix a good cover $\left\{U_{i}\right\}$ as above.

For \forall representative α w/ $[\alpha] \in H_{d R}^{2}(x, \mathbb{R})$, since α is d-closed on each U_{i}, one can find a 1 -form $\theta_{i} \in \Omega^{\prime}\left(U_{i}, \mathbb{R}\right)$ st. $\left.\alpha\right|_{U_{i}}=d \theta_{i}$.
Since $d\left(\theta_{i}-\theta_{j}\right)=0$ on $U_{i j}$, one finds
$f_{i j} \in C^{\infty}\left(U_{i j}, \mathbb{R}\right)$ sit. $\theta_{i}-\theta_{j}=d f_{i j}$. on $U_{i j}$.
Note that $d\left(f_{i j}+f_{j k}+f_{k i}\right)=\theta_{i}-\theta_{j}+\theta_{j}-\theta_{k}+\theta_{k}-\theta_{i}=0$ on $U_{j k}$
$S_{0} \exists$ constant $a_{i j k} \in \mathbb{R}_{s}+. f_{i j}+f_{j k}+f_{k i}=a_{i j k}$. on $U_{i j k}$.
It is easy to check that $a_{j k l}-a_{i k l}+a_{i j l}-a_{i j k}=0$ So $\left\{a_{i j k}\right\}$ defines a cochain in $\left.B^{2}\left(S U_{i}\right\}, \mathbb{R}\right)$
Different choices of α, θ_{i}, $f_{i j}$ only differ $\left\{a_{i j k}\right\}$ by a coboundary So one got a map from $H_{m}^{2}(X, \mathbb{R})$ to $\mathcal{H}^{2}\left(\left\{U_{i}\right\}, \mathbb{R}\right)$.
(2) Conversely, for \forall cochain $\left\{a_{i j k}\right\}$ one can recover a 2 -form α in the following magical way. Let $\left\{\psi_{i}\right\}$ be a partition of unity subordinate to $\left\{U_{i}\right\}$. Define $f_{i j} \in C^{\infty}\left(U_{i j}, R\right)$ by letting $f_{i j}:=\sum_{k} a_{i j k} \psi_{k}$. Then one has

$$
\begin{aligned}
f_{i j}+f_{j k}+f_{k i} & =\sum_{l}\left(a_{i j l}+a_{j k l}+a_{k i l}\right) \psi l \\
& =\sum_{l} a_{i j k} \psi l=a_{i j k} \text { on } U_{i j k} .
\end{aligned}
$$

So $d f_{i j}+d f_{j k}+d f_{k i}^{l}=0$
Now define $\theta_{i} \in \Omega^{\prime}\left(U_{i}, \mathbb{R}\right)$ by $\theta_{i}:=\sum_{j} d f_{i j} \psi_{j}$
Then $\theta_{i}-\theta_{j}=\sum_{l}\left(d f_{i l}-d f_{j} l\right) \psi l=\sum_{l}^{j} d f_{i j} \psi l=d f_{i j}$ on $U_{i j}$ Clue $d \theta_{i}-d \theta_{j}=0$ on $U_{i j}$. So $\alpha:=d \theta_{i}$ defines a global d-closed z-form. So we have ${H^{2}}^{2}(X,()) \rightarrow H_{d p}^{2}(X, R)$
The above two constructions are coverce to each other and generation to $\forall p \geqslant 0$.

