Lecture 3

Sheaf cohomology

Outline 1 exact sequence & examples > resolution of sheaves 3 cohomology & examples. · Recall Given y: F → G f Og is inj. De Pr is inj. for H re X I gu: X(U) → G(U) inj. for t/U J I p is surj. I g_n is surj. for ∀ x ∈ X. 3 + TEG(U) = open cover U=UUi & SiE F(Ui) s.t. The = Pu: (Si). · We call 0 > A > B > Z > 0 exact If a inj, & Enj. & Kenß = Ima. i.e. $o \rightarrow A_x \xrightarrow{d_x} B_x \xrightarrow{\beta_x} C_x \rightarrow o$ is an exact sequence. • e.g. Olet X := C. b := Z, B := O, & C := O, A: Constant sheaf. B := sheaf of holomorphic functions C := sheaf of holomorphic functions that is no-where vanishing then we have $0 \rightarrow \mathbb{Z} \xrightarrow{i} 0_{\chi} \xrightarrow{exp} 0_{\chi}^{*} \rightarrow 0$. Verify that this is exact. \bigcirc If A is a subcheap of B, then · ~ / ~ B ~ / B ~ o is exact.

 $(3) e.g. X := C, B := O_X. A := I_o ideal sheaf of o$ $then <math>(3b/A) = \begin{cases} C, n = o \\ 0, n \neq o \end{cases}$ this is a shysonaper sheaf. $\bigstar \ (\textcircled{P} \ (X = C^2), \ (Y := \{ z_1 = 0 \} \ let \ I_Y := \ (hearf of holo.)$ then and In - Ox - V/In - o. Observe that $O_{x}/T_{y} \cong O_{y}$. This exact sequences gives information for More generally, we say $X \And Y$. $\dots \longrightarrow T_{1}^{\circ} \xrightarrow{\alpha_{1}} S^{\circ} \xrightarrow{d_{1}} T^{2} \xrightarrow{d_{2}} \dots$ is a complex of sheares if $\aleph_{i+1} \circ d_{i} = 0$. We say $0 \rightarrow J_1 \rightarrow J_1^{\circ} \rightarrow J_1^{\prime} \rightarrow \cdots$ is a resolution of Ji if this complex is exact. • e.g. bet Mbe a Riem mfd. D: = sheaf of Coo i-forms on M. then $Q^{\circ} =$ shearf of C° functions on M. Then 0 -> Z i> 2 d 2 d 22 d ... is a resolution of the constant sheaf Z K 0 -) 2° d 12 d 22 d ... is a complex. it is not exact at 2°. exactness at Di bor iz follows from Poincove Lemma

• e.g. M C[∞] mfol. For V U open Let Sp(U):= { Co chains linear combinations of co maps f: AP-U Note that $\{S_p(U)\}_U$ doesn't give rise to sheaves as there is no networkion map $S_p(U) \rightarrow S_p(V)$ wherever $V \leq U$. But there is indeed an inclusion Sp(V) ~> Sp(U) so it induces a restriction Hom (Sp(U), R) -> How (Sp(V), R) let SP(U) := Hom (Sp(U), IR). then { SP(U) Ju actually gives rise to a sheaf on M. The usual coboundary map S: SP -> SP+1 gives a resolution of the constant sheaf IR. ·→ R i S · S · S · → S · → ··· for each pt x ∈ X associate it to a constant value. · Now, what is cohomology? Criven a short exact sequence 0→人うろ」と→0 Then it is stronglit forward to show that the sequence $\circ \rightarrow A(X) \rightarrow B(X) \rightarrow C(X) \rightarrow \circ$ is exact at A(x) & B(x) but not at C(X). The cohomology group measures the inexactness ! Another example. O Griven a guyjection between two groups 9: G -> H.

For another group K, it is easy to see that q induces an injection gt : Hom (H, K) -> Hom (G,K) () Now given an injection p: G cos H it is not necessarily frue that 4*: Hom (H,K) -> Hom (G,K) is surjection. So in general there are obstructions for a morphism G->K to extend to a morphism H->K. 3 So in general, whether something can be extended or whether something is the restriction of something from a bigger space ave both questions about obstructions. these are offen related to cohomology theory! · Axioms of sheaf cohonology. let X be a paracompact Hausdorff space X. (So X has partition I open over admits a locally finite refinement of unity) Then for I sheaf J. of abelian groups one can associate a sequence of groups H²(X, J.) for 27,0 S.t. $H^{\nu}(X, \mathcal{F}) = \mathcal{F}(X)$ If I soft, then HF(X, F)=0 for all g=0 3 For I sheaf morphism h: A -> B I for I 220 a group acorphism hg: H2(X, A) -> H2(X, B) 5.t. functorality ho=hx: A(X) -> B(X). hg=id if h=id for \$70 given b h 33 g e over has 3g o hg = (gohg,

(4) For to short exact sequence $3 \operatorname{group homomorphism} S^{2}: H^{2}(X, \mathcal{L}) \to H^{2+1}(X, \mathcal{A})$ sit. the induced sequence $o \rightarrow H^{\circ}(X, A) \rightarrow H^{\circ}(X, B) \rightarrow H^{\circ}(X, C) \rightarrow H^{\prime}(X, A) \rightarrow H^{\prime}(X, B)$ $\neg \dots \rightarrow H^{\sharp}(X,A) \rightarrow H^{\sharp}(X,B) \rightarrow H^{\sharp}(X,C) \rightarrow H(X,A)$ (5) A commutative diagram のイクガラくつの · っん'っち'ってー い induces a communicitive diagram $\sim H^{\circ}(X, A) \rightarrow H^{\circ}(X, B) \rightarrow H^{\circ}(X, E) \rightarrow H^{\prime}(X, A) \rightarrow \cdots$ $\rightarrow H^{\circ}(X, \not k) \rightarrow H^{\circ}(X, \not b) \rightarrow H^{\circ}(X, \not c) \rightarrow H^{\prime}(X, \not c) \rightarrow \cdots$ * Thm. Such cohomology theory exists & is carrigue. · Soft sheaf. Def. A sheaf Is is called soft if for I closed subset KSX, the restriction In(X) -> Jn(K) = lim J(U) is surjective. ▲ e.g. The sheaf of continuous / C' / C ∞ functions is soft. But the sheaf of holomorphic functions is not soft ! bet R be a sheaf of rings & M a sheaf of R-module,
Nowely, each M(U) is an R(U)-module. If R is soft then M is also soft. • Con the sheaf 2° of differential provins is soft.

· Thue bet on J ~ J ° ~ J' ~ ~ computation be a resolution of J. s.t. J' is soft for all i zo of sheaf. Then consider the complex of sheaf. $0 \rightarrow J^{\circ} \stackrel{>}{\rightarrow} J' \stackrel{>}{\rightarrow} J^{2} \stackrel{>}{\rightarrow} \cdots$ One has $\ker \partial^{q} \cong H^{q}(X, F).$ (5¹=0) • Examples of sheaf cohomology groups. We end this becture by computing $H^{\mathcal{B}}(M, \mathbb{R})$. 0→ R→ L→ L→ L→ L→ ···· (Sof revolution) then $H^{b}(X, \mathbb{R}) \cong \frac{kar(\sqrt{2^{2}} d, \sqrt{2^{n}})}{Im(\sqrt{2^{2}} d, \sqrt{2^{n}})}$ On the other hand one also has o→R→S°→S'→ ··· (this is also soft!) then one finds that $H^{q}(X, \mathbb{R}) \cong \frac{\ker(S^{2} - \frac{5}{3}S^{2+1})}{\operatorname{Tm}(S^{2+1} - \frac{5}{3}S^{2})}$ This is exactly the de Rham theorem. K. Čech Cohomology. Let X be a topological space & Fra skeaf. Let us fix an open covering $X = \bigcup_{i \in I} \bigcup_$ One can define a coboundary operator d; CP-> CP+1 by: for $\forall d = TId ionip \in C^{P}$, define dot by putting $(d\alpha)_{i_0} \cdots i_{p_{H}} := \sum_{k=0}^{p_{+1}} (\neg)^k \alpha_{i_0} \cdots i_{k, \cdots, i_{p+1}} U_{i_0} \cdots i_{p_{+1}}$

e.x. Check that $d \circ d = 0$. $\forall \mathcal{A} \in \mathbb{C}^{P}(\{U_{i}\}, \mathcal{F}) \not \forall d \mathcal{A} \text{ is called a } p-cochain$ (all the p-cochains $j =: \mathbb{Z}^{P}(\{U_{i}\}, \mathcal{F})$) $\forall \mathcal{B} \in \mathbb{C}^{P}(\{U_{i}\}, \mathcal{F}) \not \forall p = d \mathcal{A} \text{ for some } d \in \mathbb{C}^{P-1} \text{ is } p-coboundary.}$ fall p-colourndary] =: B¹({Ui, F}). Chen define $H^{P}((U; I, F)) := \frac{\operatorname{Ker}(C^{P} \stackrel{d}{\to} C^{P})}{\operatorname{Tm}(C^{P} \stackrel{d}{\to} C^{P})} = \frac{Z^{P}}{B^{P}}$ Note that this construction ded on the choice of [U;]. If [Vi] is a refinement of [Vi], then there is a natural map H((Uit, T) -> H'((Vj), F) Then one defines the Čech columnology w/o specifying an open cover as $H^{P}(X, F) := \lim_{\to \infty} H^{P}(U; J, F)$ ▲ For y open cover { Ui } there is a notated homomorphism H^P({U:3,F) → H^P(X,F), which is not necessarily bijective But passing to the limit often result in icomorphisms (at least when X is peracompact) The upshot is D One always has $H'(X, F) \cong H'(X, F)$ when i=0.1 [] One has H'(X,F) ≈ H'(X,F) for i>1 When X paracept. So when X is a diff. mfd, one has H'(X,F) ≈ H'(X,F). Vizo. When X is a diff. mfd, one can always find a "good cover" 1U: s.t. ∀ Uio...ip is contractible. In this case, H^P(1U:1, R) = H^P(X, R). More generally, for a cheaf I on X, if there is an open over (Ui) s.t. HT(Uiomip, K) == for 49>1, H Viomip. then one has Ho((Ui), F) = Ho(X,F). Such a cover is called <u>Leray cover</u>, which is quite useful to compute cohomology.

• Thm. Let X be a diff. mtd w/ the constant sheaf IR. Then HP(X,R) = Har(X,R). pf: We will look at the case p=2 to illustrate the ideas. The general cases follow in a similar manner. O We will fix a good cover (U; f as above. For f representative a w cajeH²dR(X, R), since x is d-closed on each Ui, one can find a 1-form $\theta_i \in \Omega^1(U_i, \mathbb{R})$ s.t. $\partial I_{U_i} = \partial \theta_i$. Since $d(\theta_i - \theta_j) = 0$ on U_{ij} , one finds fij E C[®](Uij, IR) st. Oi-Oj = Afij. on Uij. Note that d (fij + fjre + frei) = 0:-0;+0j-0r+0r-0;=0 on Ujr So I construct Aijkerst. fig + fix + fix = Aijk. On Uijk. It is easy to check that ajke - Aike + Aije - Rijk = 0 So {aijk} defines a cochain in B²(SUIS, R). Different Unoices of a, Bi, fij only differ faijkj by a coboundary So one get a map from $H^2(X, \mathbb{R})$ to $H^2(SUi), \mathbb{R})$. Donversely, for ∀ cochain { aijk } one can recover a 2-form a in the following magical way bet { 4; } be a partition of unity subordinate to {Ui}. Define fij ∈ C[∞](Uij, R) by letting fin := I aijk the Then one has $f_{ij} + f_{jk} + f_{ki} = \sum_{i=1}^{n} a_{ijk} + a_{jkl} + a_{kil} + \psi_{i}$ = Zajkte = aijk on Dijk. So dt: + dfjx + dfx: =0. Now define $\Theta_i \in \Omega'(U_i, \mathbb{R})$ by $\Theta_i := \sum df_i f_j$ Then $\theta_i - \theta_j = \sum_{i=1}^{n} (df_i - df_j - df_j) \psi_i = \sum_{i=1}^{n} df_i \psi_i = df_i = df_i$ chus de: - de; =0 on U; So & = de; defines a global d-closed 2-form. So we have $H^{*}(X, \mathbb{R}) \rightarrow H^{*}_{d, \mathbb{R}}(X, \mathbb{R})$ The above two constructions are overse to each other and generalized to yp>0.