Lecture 5
Complex Vector Bundles

Outline

- Definition of complex vector bundles
- Examples
- $\Omega^{p, q}$ as a bundle \& Dolbeault cohomology.
- Hermitian connections \& curvature not enough time
- Chern classes move to the next lecture!
- Def (Complex vector bundle) A splx vector bundle of rank r over a differentiable mfd X is a differentiable mol E together with a smooth surjective map $E \xrightarrow{\pi} X$ s.t.
(1) $\forall p \in X, \pi^{-1}(p)$ has the structure of r-dim vector space over \mathbb{C} Write $E_{p}:=\pi^{+}(p)$, which is called the fiber over p
(2) J open cover $\left\{U_{i}\right\}$ of X sit. $\pi^{-1}\left(U_{i}\right)$ is differmorphic say via φ_{i}, to $U_{i} \times \mathbb{C}^{r}$ \& or each overlap $U_{i} \cap U_{j}$ the induced' map $\left(U_{i} \cap U_{j}\right) \times \mathbb{C}^{r} \xrightarrow{\varphi_{i} \circ \varphi_{j}^{-1}}\left(U_{i} \cap U_{j}\right) \times \mathbb{C}^{r}$ can be identified wt a smooth map $U_{i} \cap U \rightarrow G L(r, \mathbb{C})$
The pair $\left(U_{i}, \varphi_{i}\right)$ is culled a local trivializotid $\rightarrow G\left(\begin{array}{l}\text { a }\end{array}\right.$ The pair $\left(U_{i}, \varphi_{i}\right)$ is called a local trivialization.
$\varphi_{i} \cdot \varphi_{j}^{-1}$ is called transition matrix
- Def. (Holomorphic vector bundle) The definition is similar ab above. Just replace every shore "differentiable/smooth" with "complex/holomorphic". EX. Make the definition precise.
- Example.
(1) $E=S^{r} \times \mathbb{C}^{r}, \quad X=S^{\prime}$. Then E is a (trivial) complex vector bundle of rank r over S^{\prime} But this is not a holomorphic vector bundle as S^{\prime} is not a apple med.
(2) Consider $[0,1] \times \mathbb{C}^{r}$ together with an element $A \in G L(r, \mathbb{C})$ then we can construct a nontrivial oplx vector bundle over S^{\prime} by identifying $\left\{05 \times \mathbb{C}^{r} w /\{1\} \times \mathbb{C}^{r}\right.$ via A. This is a generalization of the Mobius band

(3) Let E be a real vector bundle over a diff. mfd X Then one can "complexity" it using the following construct i. let $\left\{\left(U_{i}, \varphi_{i}\right)\right\}$ be a local trivialization of E. But then let $E \mathbb{C}:=\bigcup_{\alpha} v_{i} \times \mathbb{C}^{r} /$ where \sim is
given as: $(x, v) \sim(y, w)$ for $\left\{\begin{array}{l}(x, v) \in U_{i} \times \mathbb{C}^{r} \text { iff } \\ x=y \& v=\varphi_{i} \circ \varphi_{j}^{-1}(w) .\end{array}\right.$

$$
x=y \& v=\varphi_{i} \circ \varphi_{j}^{-1}(\omega) .
$$

(4) Let X be a apex mfd of dim n Then $T X$ is a neal vector bundle of rank $2 n$ vex X. We may look at TX C Then it's a eplx v.b. of rank $2 n$ over X. In each coordinate chart, say $\left(U,\left(z, \cdots, z^{n}\right)\right)$, let $z^{i}=x^{i}+\sqrt{7} y^{i}$.
Then $\left\{\begin{array}{l}\left.T X\right|_{U}=U \times \operatorname{span}_{\mathbb{R}}\left\langle\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial y^{i}}\right\rangle \\ \left.T X^{C}\right|_{U}=U \times \operatorname{Span}_{\mathbb{C}}\left\langle\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial y^{i}}\right\rangle\end{array}\right.$
But remember that we have a apex structure f on X

$$
J \frac{\partial}{\partial x^{i}}=\frac{\partial}{\partial y_{i}} \& J \frac{\partial}{\partial y^{i}}=-\frac{\partial}{\partial x^{i}}
$$

So $\left.T X^{C}\right|_{U}=\left.T X^{1,0}\right|_{U} \oplus T X_{I_{U}}^{0,1}$, where

$$
\left\{\begin{array}{l}
\left.\tau x^{\prime 0}\right|_{0} ل{ }^{U} \operatorname{span} \mathbb{C}
\end{array}\left\langle\frac{1}{2}\left(\frac{\partial}{\partial x^{i}}-J_{-1} \frac{\partial}{\partial y_{i}}\right)\right\rangle \stackrel{U x}{=} \operatorname{span}_{\mathbb{C}}\left\langle\frac{\partial}{\partial z^{i}}\right\rangle .\right.
$$

These $\left.T X^{1,0}\right|_{u}$ patch together to a holomorphic $v . b$. of rank n over X. Indeed, choose another chart, say $\left(V,\left(w^{1}, \cdots, w^{n}\right)\right.$, then one has

$$
\frac{\partial}{\partial z^{i}}=\frac{\partial w^{j}}{\partial z^{i}} \frac{\partial}{\partial w j}
$$

Note that the map $U \cap V \longrightarrow G L(n, \mathbb{C})$

$$
p 1 \longrightarrow\left(\frac{\partial w i}{\partial z^{i}}\right)(p)
$$

is holomorphic. The resulting bundle $T X^{1,0}$ is called the holomorphic tangent bundle.
Rank. TX', is called "anti-holomorphis" vector bundle.
(5) The dual bundle of $T X^{1,0}$ is also holomorphic. In fact, in $\left(U,\left(z_{1}^{\prime}, \cdots, z^{n}\right)\right)$,

$$
\left.\left(T x^{1 \cdot 0}\right)^{*}\right|_{U}=U \times \operatorname{Span}_{\mathbb{C}}\left\langle d z^{\prime}, \cdots, d z^{n}\right\rangle
$$

$d z^{i}=\frac{\partial z^{i}}{\partial w^{j}} d w^{j}$. So the transition function is hole as wall
(b) Given a opex/holo. v.b. E, one can construct new ople/hoc. u.b. using duality: * or V Waring!

So in particular, $\Lambda^{p}\left(\left(T 1^{10}\right)^{x}\right)=\Omega_{x}^{P}$ is also hole.
(7) The tautological line bundle of $c P^{n}$. Define $O(-1):=\left\{(p, z) \in \mathbb{C}^{n} \times \mathbb{C}^{n+1} \mid z \in P\right\}$. ex. prove that $O(-1) \xrightarrow{\pi} \triangle P^{n}$ is a holo. v.b. of rank 1 over CP" $^{\text {' }}$.
let $O(1)$ be the dual of $O(-1)$
More generally, put $\left\{\begin{array}{l}O(k):=O(1) \underbrace{\otimes \cdots \otimes}_{k} O(1) \\ O(-k):=O(-1) \underbrace{\otimes \cdots \otimes}_{k} O(-1) .\end{array}\right.$
(8) Let X be a apex mid. Then put

$$
K_{x}:=\Lambda^{n}\left(\left(T X^{1,0}\right)^{*}\right)=\Omega_{x}^{n}
$$

In local coordinate $\left(z^{r}, \cdots, z^{n}\right),\left.K_{x}\right|_{U}=U \times \mathbb{C} \cdot d z^{\prime} n \cdots A_{z^{n}}$. Then $\operatorname{dz}^{\prime} \wedge \cdots \wedge d z^{n}=\operatorname{det}\left(\frac{\partial z^{i}}{\partial w j}\right) d w^{\prime} \wedge \cdots \wedge d w^{n}$.
ex. Show that $K_{\mathbb{C}}{ }^{n}=O(-n-1)$
(9) The bundle of (p, q)-forms: $\left.A^{p, q} p, q \in p, \cdots, \cdots\right\}$ Locally it is given by:

$$
\left.A^{p, q}\right|_{U}=U \times \operatorname{span} \mathbb{C}<d z^{I} \wedge d \bar{z}\left|\begin{array}{l}
i_{1}<i_{2}<\cdots<i p \\
j_{1}<\cdots<j_{q}
\end{array}\right\rangle
$$

This is apex v.b. but usually not holomorphic.

- Def. A smooth / holosection of a cplx/holo u.b E over $U \subseteq X$ is a smooth/holo may

$$
s: U \rightarrow E \text { st. } \pi \circ S=i d l_{U} .
$$

- We say $s(p)=0$ if $s(p) \in E_{p} \cong \mathbb{C}^{r}$ is zero.
- If E is trivialized over U, so that $\pi^{-1}(U) \cong U \times \mathbb{C}^{r}$ then \forall section s over U is given by an \mathbb{C}^{r}-valued simooth/holo. function on U.
So a section is a generalization of multivalued functions on U
- If $U=X$, then a section called "global section" If X is pt \& $E=X \times \mathbb{C}$. Then \forall how global section of E is a hole. function on X \& hence has to be a const. So this case is not interesting.

This is because the v.b. is trivial. However if we look at non-trivial holo. U.b. over X, it is possible that there exist non-trivial hols.' global sections of E.
ex. Show that there exist notrivial global hol. section of $O(1)$. What are they?
How about $\mathcal{O}(k), k>0$?

- Each cplx/holo. v.b. E over X can be naturally identified of a sheaf by patting
$E(U):=\{$ smooth/holo. sections $s: U \rightarrow E\}$
For this reason, the space of global sections of E is usually denoted as $\Gamma(X, E)$ or $H^{\circ}(X, E)$ ex. check that the above def. indeed gives a sheaf
- Let E be a cplx/holo. vi. over X. Let $U \subseteq X$ be an open. say $r k E=r$. We say smoth/nale sections $s_{1}, \ldots, s_{r}: U \rightarrow E$ is a smoosh/holo. frame if $S_{1}(p), \cdots, S_{r}(p)$ is linearly indeed in E_{p} for $\forall p \in U$. Using this frame we an identify $\pi^{-1}(U) \cong U \times \mathbb{C}^{r}$ So in particular a frame gives rise to a local trivialisation. Of course, conversely, \forall local trivatiiation gives a local frame of E. Using this frame, t section $S: U \rightarrow E$ can be written as

$$
s=\sum f^{i} s_{i} \text { where } f^{i} \in C^{\infty}(U, \mathbb{C}) \text { or } \mathcal{O}(U)
$$

- Frames can help us do computations locally.

This will be revisted in the next lecture when dealing of connections \& curvatures.

- We end this lecture by introducing the Dolbreault cohomology. Using the $\frac{\partial}{\partial}$-operator, one has a complex $0 \rightarrow \Gamma\left(X, A^{p, 0}\right) \xrightarrow{\delta} \Gamma\left(x, A^{p, 1}\right) \xrightarrow{\bar{\partial}} \cdots \rightarrow \Gamma\left(X, A^{p, n}\right) \rightarrow 0$. where each $\Gamma\left(X, A^{0, q}\right)$ denotes the space of global smooth (pi)forms.
Put $H^{p, q}(x):=\frac{\operatorname{ker}\left(\bar{\partial}: \Gamma\left(x, A^{p, q}\right) \rightarrow \Gamma\left(x, A^{p, q+1}\right)\right)}{\operatorname{Im}\left(\bar{\partial}: \Gamma(x, p, q-1) \rightarrow \Gamma\left(x, A^{p, q}\right)\right)}$ $(p, q)-D_{0} l_{\text {beaut colomblogy. }} \operatorname{Im}(\bar{\partial}: \Gamma$ Note that $0 \rightarrow \Omega_{x}^{p} \rightarrow A^{\alpha_{1}^{p_{1}^{c}} \xrightarrow{\text { che }}} A^{p_{1} 1} \xrightarrow{\bar{\partial}} \cdots$ is a soft resolution of Ω_{X}^{P} so one has

$$
H^{q}\left(X, \Omega_{X}^{p}\right) \cong H^{p ; q}(X)
$$

Ark $H^{0}\left(X, \Omega_{x}^{p}\right)=\operatorname{Ker}\left(\bar{\partial}: \Gamma\left(X, A^{p, 0}\right) \rightarrow \Gamma\left(X, A^{p, 1}\right)\right)$

$$
=\left\{\text { global kolo. section of } \Omega_{x}^{p}\right\}
$$

- In geveral, for a hole. v.b. E, one can naturally think of it as a differentialde c calx v.b. (make it "soft") which we denote ar \mathcal{E}. Then one has soft resolution of E :

$$
0 \rightarrow E \rightarrow E \xrightarrow{\bar{\partial}} A^{0,1} \otimes E \xrightarrow{\bar{\partial}} A^{0,2} \otimes E \rightarrow \cdots
$$

* Here $\bar{\partial}$ operator is well-defined using locally the hold. frames of E (Explain this)
Then by sheaf cohomolgy theory, one has

$$
H^{q}(X, E) \cong \frac{\operatorname{ker}\left(\frac{J}{\partial}: A^{0, p} \otimes E \rightarrow A^{0, p+1} \otimes E\right)}{\operatorname{lm}\left(\bar{\partial}: A^{0, p^{-1}}(E) \rightarrow A^{0, p}(E)\right)}
$$

In particular $H^{\circ}(X, E)=\{$ halo. global sections of $E\}$.

米先阱
－Def．Let $\pi_{E}: E \rightarrow X \& \pi_{F}: F \rightarrow X$ be two qdx／holo．v．b．A vector bundle homomophix from E to F is a smosth／holo．map $\varphi: E \rightarrow F$ sit． $\lambda_{E}=\pi_{F} \circ \varphi$ \＆the induced map $\varphi_{x}: E_{x} \rightarrow F_{x}$ is linear s．t．$V_{k}(\varphi(x))$ is constant in x ．
Two vector bundles are isomorphic if φ is bijective．
Bijection automatically implies that φ^{-1} is also a bundle homo． since in any／local trivialization φ / v is of the form
common
$\left.\varphi\right|_{u}$ ：

$$
\begin{aligned}
& U \times \mathbb{C}^{r} \longrightarrow U \times \mathbb{C}^{r} \\
& (x, v) \longmapsto(x, A(x) v)
\end{aligned}
$$

sit．$A: U \rightarrow G L(r, \mathbb{C})$

$$
x \longmapsto A(x)
$$

Then $A^{-1}: U \longmapsto G L(r, C)$ is also hdomopphic in x

$$
{ }^{x} \longmapsto A^{-1}(x)
$$

So φ^{-1} is also molom．bundle mophism from F to E
＊Given a kolo．v．b．Let $\left\{V_{i} \cap U_{j}, g_{i j}\right\}$ be its transition functions．One can construct a＂new＂ holo．v．h．Aby gluing $v_{i \times C^{r}}$ via $g_{i j}$ ．
Then

$$
E \cong \tilde{E}
$$

