bechine 8 Hodge Theory on Complex Manifolds

Outline 1. Hodge * operator 2. Hodge theory on Riem mfd. 3. Hodge theory on complex mfd

4. Hodge theory on Kähler mfd.

· Let V be an IR - vector space of dim in ay a Euclidean inner product <; >. let e', ..., e be an orthonormal basis. Fix Vol = e'n...ne^m. This gives an orientation of V. <., > can be extended to $\Lambda^{k}V$ for $\forall k \in \{1, ..., m\}$, whose ONB is just $\{e^{i_{1}} \land ... \land e^{i_{k}}\}_{i \in i_{1} \in ... \in i_{k} \in m}$. Now for $\forall e^{I} \in \Lambda^{k}V$ (where $I = (i_{1}, ..., i_{k})$, $i_{1} \in ... \in i_{k}$ is multi-index) define $\star e^{I} := Sign(I, I') e^{I} \in \Lambda^{m-k} V$ Extending * linearly to NEV me thus obtain a linear map $\star: \Lambda^{k} V \longrightarrow \Lambda^{m-k} V.$ e.x. O Show that $q \wedge \# \beta = \langle \alpha, \beta \rangle$. Vol for $\forall \sigma, \beta \in \wedge^{k} V$. (a) Show that $\# \# = (-1)^{k(m-k)}$ So # induces an isomorphism. 3 show that < *d, *b> = < a, b>. Thus * induces an isometry. We forsher assume that V admits a complex structure J s.t.
 (j, j,) = (,). Then m=2n must be even & (,) induces an Hermitian inner product (,) c on VC and
 NKVC = O A^{P,8} VC
 (a, p) := (a, p) for to pence If {e', ", e", Je', ", Je"} is ONB 好人·, > then { f(e'-Hije', f(e+fije))} is one of <., >C. Q.X. DShow that the above decomposition is orthogonal w.r.t. <.,.>C.

★ can be extended to V^C as well. So one has
★ : ∧^k V^C → ∧^{n-k} V^C. a A * B = < a, BZ. vol for to, BENV e.x. 5 Show that D If d∈ N^{Pig} V^C, then * d ∈ N^{n-g}, ^{n-p} V^C. So \star induces an isomorphism: $\Lambda^{p, \mathcal{B}} / \mathcal{C} \longrightarrow \Lambda^{n, \mathcal{B}} / \mathcal{C}$ Write $\neq d = \sum d^{r,s}$. Using the fact that y^{2} , $P \wedge d^{r,s} = 0$ $r_{+s=2n-p-g}$ whenever $q+r \neq n$ or $p+s \neq n \in T$ the equality $\gamma \wedge \neq d = \langle \gamma, \overline{d} \rangle_{C}$ we find that all $d^{r,s} = \psi(r,s) \neq (n-q, n-p)$ are zero. $(7) \langle * \alpha, * \beta \rangle_{\mathbb{C}} = \langle \alpha, \beta \rangle_{\mathbb{C}}. \quad \text{for } \forall \alpha, \beta \in \Lambda^{P, 8} \vee^{\mathbb{C}}. \\ \langle * \alpha, * \beta \rangle_{\mathbb{C}} = \langle * \alpha, \overline{* \beta} \rangle = \langle \overline{* \beta}, * \alpha \rangle = (4) \frac{(P+3)(n+2)}{\overline{* \beta} \wedge \alpha}$ $= d \wedge \star \beta = \overline{d} \wedge \star \beta = \overline{\langle \overline{d}, \beta \rangle}$ = <a, p> = <a, p>c. So ★ induces an isometry NPr8 → Nⁿ⁻⁸, n-p · Now let (X, g) be a cist m-dim oriented Riem nufd. Consider NTXX. We put AK(X, IR) := C(X, NK T*X) = { C^{oo}, IR-valued global k-forms on X) Then the above print wise discuss gields a globally defined operator +: A^R(X,R) → A^{N-K}(X,R), I≤K≤N.
This is called the flodge star operator of (X,g).
★ Note that ★ dpd on g.
For ¥ d,β K-forms, one has dΛ ★β = g(d, β) dVg
Where dVg := Jdetg dx'n...ndxⁿ ndy'n...ndyⁿ. Define (\cdot, \cdot) on $A^{k}(X, \mathbb{R})$ by $(\alpha, \beta) := \int_{X} g(\alpha, \beta) dv_{g}$. Define d^* : $A^k(X,\mathbb{R}) \rightarrow A^{k-1}(X,\mathbb{R})$ by perting $d^* := (-1)^{mk+m+1} * d * (d^{*2} = 0)$

 Prop. For \(\forall \(\lambda \) \(\begin{bmatrix} A^k(X), \begin{bmatrix} b \(\begin{bmatrix} A^k(X), \begin{bmatrix} b \(\begin{bmatrix} A^k, \begin{bmatrix} b \(\begin{bmatrix} A^k, \begin{bmatrix} b \(\begin{bmatrix} A^k, \beta \) \(\begin{bmatrix} b \(\beta \) \begin{bmatrix} A^k (\lambda \) \(\beta \) \\ \begin{bmatrix} b \(\beta \) \\ \begin{bmatrix} b \(\beta \) \\ \beta \beta \beta \beta \) \\ \beta $mf: (d^*\alpha, \beta) = \int_X g(d^*\alpha, \beta) dv_g = \int_X g(\beta, d^*\alpha) dv_g$ $= \int_{X} \beta \wedge \star d^{\star} d = (-1)^{m(k+m+1)} \int_{X} \beta \wedge \star \star d \star d$ = (-1) m(k+m+1)(k-1) $\int_{X} \beta \wedge d \star d$ = (-1) $\int_{X} \beta \wedge d \star d$ =(1) $k^{2} \int_{X} \beta \wedge d \star d = (1)^{k^{2}+k-1} \int_{X} d(\beta \wedge d) - d\beta \wedge dd$ Stokes = $\int_{X} d\beta \wedge \star d = \int_{X} g(d\beta, d) dNg$ $= S_{\times} g(a, d\beta) dl_{g} = (x, d\beta). \square$ Knuk Using the Leer-Civita connection V of g, one also has $\nabla : A^{k}(X,\mathbb{R}) \rightarrow A^{k+1}(X,\mathbb{R})$. One can also define the adjoint ∇^{*} , which satisfies $(x,\nabla\beta) = (\nabla^*\alpha,\beta)$ Q. What is 7* when acting on 1-forms? • Def. We say ~ (X) is a harmonic p-form if $dd=0 & d^* d=0$ If d∈ A^P(X) is harmonic, then it defines an element ξ∈ H_d(X)R, We claim that a minimises the L² norm (β, β) for β∈ ξ. Indeed, ∀β = a+dη, one has $(\beta, \beta) = (\alpha + dy, d + dy) = (\alpha, d) + (dy, dy) + 2(\alpha, dy)$ = $(\alpha, \alpha) + (dy, dy) \ge (\alpha, d)$. Thus α is the unique minimizer.

▲ Comersely, for # 3 ∈ Har (X, R), if ∃ d ∈ § s.t. d is a minimizer, then d has to be harmonic. Indeed, consider $d_t = \alpha + t d\eta$ for $\forall \eta \in A^{p-1}(X, \mathbb{R})$. $o = \hat{a}_{t} \Big|_{t=0} (a_{t}, a_{t}) = 2(a, a_{1}) = 2(a^{*}a, \eta).$ $S_{0}(d^{*}d,\eta) = 0$ for $\forall \eta \in A^{P-1}(x,R)$. Thus d*2 = o Since d is d-closed already, so
 2 is harmonic p-form
 We put J^P(X, R) := { hormonic p-forms on X } • Define Hodge Laplace $\Delta := dd^* + d^*d$. · Prop: 2 EHICX, R) if ad= 0. $pf: If \Delta d=0$, then = $(\Delta d, d) = (dd, dd) + (d^* d, d^* d)$ So d d = 0 & d* d = 0. * · Hodge Decomposition Thm. Π. One has $A^{P}(X,\mathbb{R}) = \mathcal{H}^{P}(X,\mathbb{R}) \oplus dA^{P+1} \oplus d^{*}A^{P+1}$ = Kerd @ d*A^{p+1} This decomposition is orthogonal with ('). · As a consequence one has HIX, R) = HOR (X, R) d (----> [a]. Namely, each & EHBR(X, R) admits a unique harmonic representative XE 3 which minimises the energy IIBILT: = (p, B) for BEZ.

• e.x. B Check that $*\Delta = \Delta *$. This implies that $* : \mathcal{H}^{P}(X,\mathbb{R}) \longrightarrow \mathcal{H}^{m-p}(X,\mathbb{R})$ is an isomorphism. · As a consequence, we find that the pairing $H_{dR}^{P}(X,\mathbb{R})\times H_{dR}^{m-p}(X,\mathbb{R}) \to \mathbb{R}$ is non-degenerate. , [b] (----) Sanb In fact, & ONB {di} of HP(X, R) gives an ONB Exdit of Hmp(X, R) & we have $\int di \wedge \star dj = \int_{X} g(di, dj) dVg = Jij$ So we recover the "Poincare duality" in a very computable way. From now on, assume that X is a cptx mfd, cpt, of dimn w/ a thermitian metric g. We will extend everything discussed above \mathbb{C} -linearly to $A^{k}(X,\mathbb{C})$. Then $A^{k}(X,\mathbb{C}) = \bigoplus_{P+S=k} A^{P,F}(X)$. Also put (.,) e := fx h(.,) dry, where h is the Hermitian metric induced by g so that hid, B) := g(d, B) for t d, B ∈ A^K(X, C). Recall that (e.X. (1)) ¥ : AP. 7 ~ Aⁿ⁻², n-p Also note that d* = - * d * in this case as dim X is even But note that in general it makes no sense to talk about "harmonic (p,g)-forms" using the Hodge Laplace, since in general Da is no longer of type (p,g) even if d is. So in general one cannot decompose 21th into 21 P.S. (But this is indeed true when X is Kähler) In the complex setting what we do instead is to decompose $d^* = \partial^* + \overline{\partial}^*$, where

 $\begin{array}{c}
 \bar{J}^{*2} = \bar{J}^{*2} = 0 \\
 \bar{J}^{*} := - + \bar{J}^{*} + A^{P,2} - A^{P,2} - A^{P,2} \\
 \bar{J}^{*} := - + \bar{J}^{*} + A^{P,2} - A^{P^{1},2}
 \end{array}$ · Prop. For V dEAP. BE AP. 8-1, one has $(z, \overline{\beta}\beta) = (\overline{\beta} * z, \beta) c$ $p_{f}: (\bar{\mathfrak{I}}^{*}a, \beta)_{\mathfrak{C}} = S_{\mathsf{X}}h(\bar{\mathfrak{I}}^{*}a, \beta) dl_{\mathfrak{Y}}$ = Sx g(p, 5* d) dvg = $S_{X} \bar{p} \wedge * \bar{\partial}^{*} d = (1)^{p+q} \int_{X} \bar{p} \wedge \partial * d$ = Sx2BA*d- Sx 2(BA*d) (7,p-1) (n-9, n-p) = Sx OBN * a - Sxd (BA * 2) = $S_{X} g(\partial \overline{\beta}, \alpha) dv_{g} = S_{X} g(\alpha, \overline{\beta} \overline{\beta}) dv_{g}$ $=(\alpha, \delta\beta)c$ • e.x. Show that $(d, \partial\beta)_{c} = (\partial^{*}d, \beta)_{c}$ for $a \in A^{p,q}$ • <u>Define</u> $\Delta_{\overline{\partial}} := \overline{\partial}\overline{\partial}^{*} + \overline{\partial}^{*}\overline{\partial} = \Delta_{\overline{\partial}} = \partial\overline{\partial}^{*} + \partial^{*}\overline{\partial}$. We say $d \in A^{p,q}$ is $\overline{\partial}(\overline{\partial}) - hormonic$ if $\Delta_{\overline{\partial}}d = o(\Delta_{\overline{\partial}}d = o)$. Then $\partial_{\overline{\partial}} = \partial_{\overline{\partial}} = \partial_{\overline{\partial} = \partial_{\overline{\partial}} = \partial_{\overline{$ Then, d is $\overline{\partial}$ -hormonic iff $\partial d = \partial^* d = 0$ $|d|_{\mathcal{B}} = \overline{\partial} - hormonic iff = \overline{\partial} d = \overline{\partial}^* d = 0$ • Define $\mathcal{H}_{\overline{3}}^{k} := \{ d \in A^{k}(x, c) | 4 \overline{3} d = 0 \}$ H=Pil:= { Le LPil] L= L=0 } Anoulogously, can define H = & H = Pil = on g!

One has $\mathcal{H}_{5}^{\mathbf{K}} = \bigoplus_{p \neq q = \mathbf{k}} \mathcal{H}_{5}^{\mathbf{p}, \mathbf{k}} \quad \& \mathcal{H}_{3}^{\mathbf{k}} = \bigoplus_{q \neq \mathbf{k}} \mathcal{H}_{3}^{\mathbf{p}, \mathbf{k}}$ · Hodge , Peromposition I. So a E A is J-harmonic iff each (p,q) piece is J-harmonic. D'Une has orthogonal decomposition $\mathcal{A}^{P,\mathcal{F}} = \mathcal{H}_{\mathcal{F}}^{P,\mathcal{F}} \oplus \bar{\partial} \mathcal{A}^{P,\mathcal{F}-1} \oplus \bar{\partial}^{*} \mathcal{A}^{P,\mathcal{F}+1}$ APIX = Hope & DAPI, & D J*APH, & $\mathcal{A}_{\overline{\mathfrak{Z}}}^{\mathfrak{p},\mathfrak{P}} \cong H_{\overline{\mathfrak{Z}}}^{\mathfrak{p},\mathfrak{P}} = \frac{\operatorname{Ker}\left(\overline{\mathfrak{Z}}:\mathcal{A}_{\overline{\mathfrak{Z}}}^{\mathfrak{p},\mathfrak{P}}-\mathcal{A}_{\overline{\mathfrak{Z}}}^{\mathfrak{p},\mathfrak{P}+1}\right)}{\operatorname{Im}\left(\overline{\mathfrak{Z}}:\mathcal{A}_{\overline{\mathfrak{Z}}}^{\mathfrak{p},\mathfrak{P}+1}-\mathcal{A}_{\overline{\mathfrak{Z}}}^{\mathfrak{p},\mathfrak{P}+1}\right)}$ $\mathcal{H}^{P,\mathcal{C}}_{\partial} \cong \mathcal{H}^{P,\mathcal{C}}_{\partial} := \operatorname{Ker}(\partial:\mathcal{A}^{P,\mathcal{C}} \rightarrow \mathcal{A}^{P,\mathcal{C}+1})$ Im (2: AP, 8-1 -> AP, 8) * induces isometry: His 2 H in 2, n-p
 Also note that Conjugation induces isomorphism:
 21812 2 18, P $\mathcal{H}_{5}^{P_{1}\mathcal{B}} \cong \mathcal{H}_{3}^{\mathcal{B}, \mathcal{P}}$ Thus $\mathcal{H}_{5}^{P,\mathcal{B}}$ completely determines $\mathcal{H}_{3}^{P,\mathcal{B}}$. · The pairing $\mathcal{H}_{\bar{2}}^{P_{1}P_{2}} \times \mathcal{H}_{\bar{3}}^{n-p, n-q} \longrightarrow \mathbb{C}$ Serve Duality 2, $p \longrightarrow \int_X dn \beta$ is non-degenerate. Indeed, if $\alpha \in \mathcal{H}_{3}^{P,8}$, then $x \ni \in \mathcal{H}_{5}^{n-p,n-9}$ so that $\int_X dn x \equiv S_X g(\omega, \bar{\omega}) dv_g \ge 0$. So if $\{a_i\}$ only of $\mathcal{H}_{5}^{P,2}$, then $\{x \ni_i\}$ is one of $\mathcal{H}_{5}^{n-p,n-2}$.

• As a consequence, $\dim H_{5}^{p,g} = \dim H_{2}^{p,p} = \dim H_{2}^{p,n-p} \inf_{f,n-g}^{h-p,n-g}$ 8 $H^{q}(X, \Omega_{X}^{p}) \cong H^{n-q}(X, \Omega_{X}^{n-p}) \leftarrow sheaf cohomology.$ So $H^{q}(X, K_{X}) \cong H^{n-q}(Y, \Omega_{X})$ So $H^{p}(X, K_{X}) \cong H^{n-p}(X, O_{X})$ A Warming: in general it is not true that $\dim H^{p,2}_{z} = \dim H^{p,p}_{z}!$ A A so warning: $\Delta \neq \Delta_{3} + \Delta_{5}$ in general $(3\overline{3} + \overline{3} + \overline{3}$ We mention that for I holo. U.b. E over a cpt cplx mfd X one has (after choosing Hermitian metrics) a Hodge theory for E-valued up, 91-forms, s.t. $\mathcal{H}_{\mathcal{I}}^{p,q}(X,E) \cong \mathcal{H}^{r}(X, \Omega_{x}^{p,\infty} \in)$, and one has a general serve duality $H^{2}(X, \Omega^{p}_{X} \otimes E) \cong H^{n-2}(X, \Omega_{X} \otimes E^{*})$. In the Kähler setting, one has $\Delta = \Delta_{\partial} + \Delta_{\bar{\partial}} = 2\Delta_{\partial} = 2\Delta_{\bar{\partial}}$ So $\Delta_{\bar{\partial}} = \Delta_{\bar{\partial}} = \pm \Delta$ are real operators. These are proved using "Käther identitives". We omit the detail. · let (X,g) be a cpt Kähler mfd, then $\begin{array}{l} \mathcal{H}^{k}(X, \mathbb{C}) = \mathcal{H}^{k}_{\overline{z}} = \mathcal{H}^{k}_{\overline{z}} = \bigoplus \mathcal{H}^{p, p}_{\overline{z}} = \bigoplus \mathcal{H}^{p, p}_{\overline{z}} = \bigoplus \mathcal{H}^{p, p}_{\overline{z}} = \mathcal{H}^{p, p}_{\overline{z}} = \mathcal{H}^{p, p}_{\overline{z}} \\ \begin{array}{l} 2 & \mathbb{C} \text{-valued harmonic forms} \\ \text{So one finds that} \\ \end{array} \\ \begin{array}{l} \mathcal{H}^{k}(X, \mathbb{C}) \cong \bigoplus \mathcal{H}^{p, p}_{\overline{z}}(X, \mathbb{C}) & \stackrel{\leftarrow}{\to} \mathcal{H}^{p, p}_{\overline{z}}(X, \mathbb{C}) \\ \end{array} \\ \begin{array}{l} \mathcal{H}^{k}(X, \mathbb{C}) \cong \bigoplus \mathcal{H}^{p, p}_{\overline{z}}(X, \mathbb{C}) & \stackrel{\leftarrow}{\to} \mathcal{H}^{p, p}_{\overline{z}}(X, \mathbb{C}) \\ \end{array} \\ \begin{array}{l} \mathcal{H}^{p, p}_{\overline{z}}(X, \mathbb{C}) & \stackrel{\leftarrow}{\to} \mathcal{H}^{p, p}_{\overline{z}}(X, \mathbb{C}) \\ \end{array} \end{array}$ In this setting, I C-valued harmonic K-form can be deveryosed as the sum of harmonic (p,2)-forms w/ p+9=K. But such decomposition dpd on the Kähler metric. However, h'B:= dimH^{P/7} is inded of g & b_K = ∑ h^{1/8} Hodge number P+q=k

 Cor The betti number bak+1 of a cpt Kähler mfol must be even.
 of: This follows from h^p¹⁸ = h², p. At the Kähler form to itself is a harmonic (1,1) form ! (e.x. Show that $3^{*}\omega = 0$) This implies that IW] E H_1R(X,R) OH''(X,R) is non-trivial. For I Kähler form w, we call Iw] the Kähler class of w Conversely, for I 3 E H d R (X, IR) A H''(X, R), if] a positive representative a E3, then & defines a Kähler metric. The set 2 Kähler forms in $H^*_{d_A}(X, \mathbb{R}) \cap H''(X, \mathbb{R})$ is celled the Kähler cone of X, denoted by K(X)· e.x. Assume that w & w' are two Kähler forms s.t. FWJ = FW'J. Then $\exists \varphi \in C^{\infty}(X, R)$ s.t. $\omega' = \omega + 5405 \varphi$. $\partial \overline{\partial} - \psi = muna$.