becture 9 Kodaira Embedding ...

Outline. 1. Lefschetz (1,1) theorem. 2. Ample line bundle & possitive line bundle 3. Kodoira vanishing. 4. Kodaira embedding bet X be a set cplx mfd w/ a holo, line bundle L on it. We have seen that, using the indusion Z -> R, G(L) can be represented by a closed real (1,1) form, a curveline form of L.

Now we ask the following question: if 3 EH²(X,R) n Im(H²(X,Z) →H²(X,R)) can be represented by a closed real 2-form x ∈ 3 that is of type(1,1), then can one find & hold lib. Lover X s.t. c1(L) = 5?

To study this problem, are look are the exact sequence: Pic(X) = H'(X, OX) → H²(X, Z) → H²(X, OX) = H^{o,2}₅(X). We find that Ker T= ImCo. Co we need to study the map H²(X, Z) → H²(X, OX).

In what follows, we will use a larger indusion Z ~ R ~ C.

P.X. This diagram is commutative. From this we get an explicit description of $H^{2}(X, \mathbb{C}) \rightarrow H^{2}(X, \mathbb{O}_{X})$; for \mathcal{H} \mathbb{C} - unlied d-closed \perp form d, write $d = d^{0/2} + d^{1/2} + d^{2/2}$. Then $\exists \chi^{0/2} = 0$. So $[d^{0/2}]$ defines an element in $H^{0/2}_{\exists}(X)$. The map $H^{1}_{JR}(X, \mathbb{C}) \rightarrow H^{0/2}_{\exists}(X)$ is well-defined. Ed $\exists \mapsto \mathbb{E} d^{0/2}]$

Now the map H⁺(X, Z) -> H⁺(X, Ox) can be described as follows,

Using Cech columology, & [o] & H (X, Z) gives rice to a d-closed real 2-form on X, so treating it as a a-valued 2-form one can take its (0,2) part 2002. Then the map H2(X,Z) -> H2(X, 0x) is given by [d] 1-> [d] This actually holds for H= (X,Z) -> H= (X, Ox), K = 1 Now, what is the hornel of this map? By the above discussion, ¥ 3 € Twi (H'(X,2) → H2(X,0)) its (12) part d¹² is J-exact, hence [d¹²]=0 in H²(X,OX)

So we see that \exists hold. J. b. L s.t. $G(L) = \xi \in Im(H^{1}(X,2) \rightarrow H^{1}(X,R))$ iff \exists (so any) representative $d \in \xi$ satisfies that $\alpha^{o, d}$ is $\tilde{\sigma}$ -exact.

Cor. A class z∈ Im(H²(X,Z) → H²(X, (R))) is the 1st chern class of a holo, line bundle iff one can find a representative 2∈ z s.t. d is of type (1,1)
rf: If z=G(L) borsome hds. L, then the clien carrative form (normalized by In) is of type (1,1), representing z. Conversely, if ∃ (1,1) representative in z, we see that z lies in the fernel of H²(X,Z) → H²(X,O_X), So ∃ holo. L s.t. G(L) = z (modulo forsion of course) See [Hypbrechts's brock] []

• Another way to prove this is to use the fact that $\exists c \operatorname{lement} \exists c \operatorname{Im}(H^{2}(X,X) \rightarrow H^{2}(X,R))$ corresp. to a cpl_{X} line bundle \sqsubseteq so the goal is to find a "holonwomphic $\operatorname{structure}$ on L ", i.e., a \exists_{L} -operator" $\operatorname{A}^{\circ}(L) \rightarrow \operatorname{A}^{\circ,1}(L)$ that satisfies the Leibnitz rules and $\eth_{L}^{\circ} = 0$. This is where the type (1,1) condition comes in : first, pick \exists cplx connection ∇ on L , then its curvature $\operatorname{sf.} \nabla^{2} = \omega + d\alpha$ for some 1-form d. Define \eth_{L} to be the $(\mathfrak{O}, \mathfrak{I})$ part of $\nabla + d$. Then we check that $\eth_{L}^{\circ} = 0$ since $(D+\alpha)^{2} = \omega$ has no type $(\mathfrak{O}, \mathfrak{I})$ part. \Box .

In the Kählet setting, the above result is known as Lefschetz theorem on (1,1)-classes, which is Define $H^{(1)}(X, Z) := Im(H^{2}(X, Z) \rightarrow H^{2}(X, C)) \cap H^{(1)}_{\overline{a}}(X)$ Then the map $Pic(X) \rightarrow H_{\overline{a}}^{\prime\prime}(X, \mathbb{Z})$ is surjective. P_{1}^{2} : We go back to the proof the previous lemma. In the Kähler setting $H^{2}(X, \mathbb{C}) = H^{2}_{5}(X) \oplus H^{1/2}_{5}(X) \oplus H^{2/2}_{5}(X)$ for I ZE Im (H'(X,Z) > H'X,C)), we can find a harmonic representative 2+5 (w.r.1. some Köller metric). Since 3 E H (X, IR) E H (X, Q), d is real. Then Z^{2,0} = 2^{0,2}. Now using the exact sequence $\rightarrow \operatorname{Prok}) \xrightarrow{\sim} H^{*}(X, \mathbb{Z}) \xrightarrow{\sim} H^{*}(X, \mathbb{O}_{X}) \xrightarrow{\sim}$ z is of the form Ci(L) iff d°'=0 so that d=d'. • Def A hole. L'ne bundle L over X is called positive if I Hermitian metric h on L s.t. its curvature form Rh is positive definite (so it gives a Kähler metric). Prop : A cptx mfol admits a positive line burdle iff
 ∃ s ∈ Im(H²(X,Z) → H²(X,R) at. ∃ Kähler form Wes pf: This is clear from the above discussions. I The following result is also clear.
 Prop: A cpt Kähler mfd admits a positive line bundle $H''(X,\mathbb{Z}) \cap K(x) \neq \varphi$ Bop let X be cpt Kähler. If h³² = 0, then X admits a positive line bundle.

pf: h'' = h'' = o implies that $dim H^2(X, R) = h''$, so Im (H2(X,Z) -> H2(X, R1) spanns the entire H2(X,R). Thus I holo line hundles Li, ..., Lo & a, ..., are R s.t. $a_1 c_1(L_1) + \dots + a_b c_1(L_b) = E W J$. Slightly perturbing w & ai, we may assume that ai E Q. Kähler un Then a sufficiently divisible integer N W Nai EZ is open! defines a bolo. Line bundle L:= Nai Li + ... + Na, Li s.t. CI(L) = [Nw] is represented by a Kähler form. []. • Def. A holo. line bundle Lover a cpt yolx mfd is called ample if for 4 K >>0, a basis h So,..., Sd, J of H°(X, KL) defines an embedding: X → (Cp dk × 1 → (So(X): ...: Sd, (x)]. For such k, kL is called very ample Check that in this case kL = i* (O(1). Jt is clear from the definition that Prop A cpt cplx mfd is projective iff it admits an ample line bundle. of: One direction is direct from the definition. For the other direction, if X embedds in CPN, then O(Y) x is ample. Here we used that (O(1) is ample on Cp". Why? . _ · Prop. Auple leve bundre must be positive. $pf: RL = i^{*}O(i), Soci(RL) = \pm i^{*} UFS.$ $\Rightarrow Ci(L) is represented by \pm i^{*}WFS > 0. \Box.$

Assume that X is cpt cplx mfd. • Thm (Kodoira) A positive live bundle is ample. This is a highly non-trivial result, so we won't give the proof here. But we would like to point out the key fast used in the proof. ▲ let fi be an analytic coherent sheaf on X, La positive line bundle on X, then one has Serve Vanishi (X, J. OLK) = 0 for Viro & VK » 0. This will imply that () For f pEX, 3km s.t. 3seH"(X, kL) s.t. So that S(p) =0. Note that this is open condition, Lis semi-angle I is semi-angle I settecx, nL) st. sip)=0. Then X-Dp~ is well defined. O For Hp, g EX, j k >> 0 S.t. IS, S2 EH (X, PU) St. Spp)=0, S1(q)=>0 while S1(p)=0 & S1(q)=0. The covering argument as above shows that making k larger, the map X -> CPN is injective. 3 We need to show that sections in H°(X, KL) separate tangent directions at $\forall p \in X$, by further increasing k For O, we need to show that $H^{\circ}(X, \mu L) \rightarrow \mu L_{p}$ is surjective For O we need $H^{\circ}(X, \mu L) \rightarrow \mu L_{p} \oplus \mu L_{q}$ surjective tor 3 we need H°(X, KL) -> KLp& Op/2 surjective To get surjectivity, it is enough to use max ideal. H'(X, RL@Mp) = H'(X, RL@Mp,g) = H'(X, KL@Mp)=0 The exact sequence will binish the proof.

 Cor A cpt cplx mfd mfd is projective iff it admits
 a possitive line bundle. (In this case it must be Kähler) iff it admits a Hodge class (i.e., a Köhler class in H"(X,Z)) · Finally, we state a few vanishing thron's. ① (Kodaira-Nakano vanishing) If L→X is positive X yt. Then H^g(X, Ω^P_x⊗L)=0 when p+g>n. ∂ (Kodaira Vanishing) If L→X is positive. X cpt. chen H& (X, Kx & L) = 0 when 921. weaker than 3 (Generalized Kodaira vanishing) If L is big & nef Xept. then HP(X, KXDL)=0 when 9=1. Volle) ~ prt/ =>0, 30660. (Nadel Vanishing) If L is big, X ept. Assume that
 Ladmits a singular Hermitian metric h=hoe⁻⁴, where
 ho is snooth background metric & q use, L' s.t.
 Rho + idd q ≥ E W in distribution sense multiplier
 Define I(q) := ffEOI Iffer CL'us f g.
 deal shoot
 f q. Then H&(X, Kx@L@I(q))=0 when g=1. • Lor Lample. They H²(X, mL) = 0 for 93/8 m». pf: Observe that ml - Kx is positive, so ample for more So the assertion follows from Kodaira Vanishing I

A few words about the proof of Kodaira-Nakano Hum. As we mentioned above, one can prove it using L'-theory. Another elegant way is to use Nakano identity" For a holo. Hermitian (-b. (L,L) on a cpt Kähler med (X, w) one can consider the chean connection ∇_{L} on L, s.t. $\nabla_{L} = \partial_{L} + \overline{\partial}$. Then define, $\Delta_{\overline{\partial}} := \overline{\partial}\overline{\partial}^{*} + \overline{\partial}^{*}\overline{\partial}$ They act on L-valued (φ, q) forms. Then the Nakano identity says that $\Delta_{\overline{\partial}} = \Delta_{\partial} + [R_{h}, \Lambda]$ $R_{h}(\cdot) := R_{L} \wedge \cdot$ $\Lambda := (w \wedge \cdot)^{*}$ adjoint of lefschetzopenet $\Lambda := (W \Lambda \cdot)^*$ adjoint of lefs chets operator. Here $[R_{h}, \Lambda] \in (\mathcal{O}(X, \Pi^{p, 1}(L)^{*} \otimes \Pi^{p, 1}(L)))$ is a tensor that can be explicitly described if one diagonalize R_{L} at one $p\epsilon$, say $R_{L} = \operatorname{diag}(\lambda_{1}, \dots, \lambda_{n})$, w.t.t. ω . Then for $V = \sum_{ij} U_{IJ} dz^{I} \Lambda dz^{J} \in \mathcal{O}(X, \Pi^{p, 1}(L))$, it holds that $\Gamma R_{h}, \Lambda J U = \sum_{ij} (\sum_{i \in I} \lambda_{i} + \sum_{j \in J} - \sum_{k=1}^{p} \lambda_{k}) U_{IJ} dz^{I} \Lambda dz^{J}$. Now if L is positive, we may choose W:= Rh so that $\Sigma R_{n,k} \exists n = (p+g-n) H.$ Then we find that, whenever p+g>n, $\| \overline{\partial} u \|^2 + \| \overline{\partial}^* u \|^2 = | \Delta_{\overline{\beta}} u, u \rangle_{\mathbb{C}} \ge | [\mathbb{L} \mathbb{R}_{L}, \wedge \mathbb{J} u, u \rangle_{\mathbb{C}} \ge | [u \|^2]$ So & 5-harmonic L-valued (p,g) form must be zero. · Asymptotic Riemann-Roch: let L be ample. then for m=>1, one has dim H°(X, mL) = Hilbert polynomial of m (of dag n) $= \frac{L^{n}}{n!}m^{n} + \frac{(+x_{x}) \cdot L^{n-1}}{\sum_{n=1}^{n-1} m^{n-1} + \cdots + \sum_{n=1}^{n-1} (-1)!} M^{n-1} + \cdots + \sum_{n=1}^{n-1} (-1)! M^{n-1} + \cdots +$ $\mathcal{X}(\mathcal{O}_{\mathsf{X}}) := \sum_{i=1}^{\infty} (-i)^{i} \operatorname{dim} H'(\mathcal{X}, \mathcal{O}_{\mathsf{X}})$ Pf: By Hirsebruch-Rien-Roch, one had $\mathcal{X}(mL) = \sum_{i \neq 0} (H^{i}(X, mL)) = \int_{X}^{\prime} ch (H) td(X)$ Since Hi(X,mL)=0 for iz 8m>1 Hilbert polynomial we find that Hibert polyensial = dimt("(X, ml) for m>> 1.

· As a consequence, we find that so must be noncollepsing $Vol(L) = L^{"}$ when L is anyle. So $Vol(L) = \int_X w^{"}$ if one pick $w \in \pm c_1(L)$. In this use us must be integer. This also holds when L is merely nef (dimH'(X,mL)=o(m'') for i21) This no longer holds when L is big.