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Abstract. This is a continuation of [57]. Using Calabi ansatz and Fano index,
we give several optimal volume upper bounds for polarized Kähler manifolds
with positive Ricci curvature. Along the way we obtain some new characteri-
zations of the complex projective space.

1. Introduction

Let (X, g) be an m-dimensional Riemannian manifold such that

Ric (g) ≥ (m− 1)g.

Then the famous Bishop–Gromov volume comparison says that

Vol(X, g) ≤ Vol(Sm, g
Sm

),

and the equality holds if and only if (X, g) is isometric to the standard m-sphere
Sm. However, suppose in addition that X has a complex structure J such that
(X, g, J) is Kähler, then Liu [40] shows that this volume upper is never sharp
(unless X = P1), in the sense that there exists a dimensional gap ε(n) > 0 such
that

Vol(X, g) ≤ Vol(Sm, g
Sm

)− ε(n).

This distinguishes the Kählerian geometry from the Riemannian case (see also Li–
Wang [38] for related discussions using holomorphic bisectional curvatures). So it is
natural to ask what the optimal volume upper bound should be. In [57] the author
obtained the optimal upper bound for compact Kähler manifolds with positive Ricci
curvature, which is stated as follows:

Theorem 1.1 ([57]). Let (X,ω) be a Kähler manifold of dimension n that satisfies

Ric (ω) ≥ (n+ 1)ω,

then
Vol(X,ω) ≤ Vol(Pn, ωFS),

and the equality holds if and only if (X,ω) is biholomorphically isometric to (Pn, ωFS).
Here Pn denotes the complex projective space and ωFS is the Fubini–Study metric
on Pn such that

∫
Pn ω

n
FS = (2π)n.

The proof of the above result mainly uses the greatest Ricci lower bound and its
relation to the δ-invariant. The essential point is to reformulate the Ricci curvature
condition using twisted Kähler–Einstein equations, which gives a lower bound of
the analytic δ-invaraint introduced in [58]. This further implies a lower bound of
the algebraic δ-invariant by [58, Proposition 4.5] (see also [59]). And then Fujita’s
estimate in [16] gives the optimal volume upper bound of the cohomology class.
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In this article we will mainly focus on the case when ω lies in the first Chern
class of some ample line bundle. As we shall see, one can use Calabi ansatz to
derive an optimal volume upper bound for the line bundle. Our methods is related
to Sasakian geometry and also gives some partial answer for the ordinary double
point (ODP) conjecture [48, Conjecture 1.2]. Note that Calabi ansatz has also been
utilized in the recent joint work [60] of the author to explicitly compute δ-invaraints
of projective bundles.

To state our results more precisely, let us fix some notions. Throughout this
article X denotes an n-dimensional Fano manifold, meaning that its anti-canonical
line bundle −KX is ample. For any line bundle L on X one can define its index
I(L) to be

(1.1) I(L) := max{k ∈ N | ∃ line bundle H on X s.t. L = kH}

When L = −KX , we put

(1.2) I(X) := I(−KX),

which is called the Fano index of X.
In what follows, L is always assumed to be ample. In this case, one can naturally

define the greatest Ricci lower bound β(X,L) by

(1.3) β(X,L) := sup{µ > 0 | ∃ Kähler form ω ∈ 2πc1(L) s.t. Ric (ω) ≥ µω}.

Note that, by the Calabi–Yau theorem, given any Kähler form α ∈ 2πc1(X), one
can always find ω0 ∈ 2πc1(L) such that Ric (ω0) = α > 0. By compactness of X we
see Ric (ω0) ≥ εω0 for some ε > 0. So β(X,L) is always a positive number. On the
other hand, β(X,L) is naturally bounded from above by the Seshadri constant

(1.4) ε(X,L) := sup{µ > 0 | −KX − µL is nef}.

Thus we always have

(1.5) 0 < β(X,L) ≤ ε(X,L).

Remark 1.2. In the special case L = −KX ,

β(X) := β(X,−KX)

is the usual greatest Ricci lower bound. This invariant was the topic of Tian’s
article [55] although it was not explicitly defined there, but was first explicitly
defined by Rubinstein in [44, (32)], [45, Problem 3.1] and was later further studied
by Székelyhidi [52], Li [33], Song–Wang [49], Cable [6], et al.

Our goal is to bound the volume Vol(L). Here Vol(L) := (c1(L))n denotes the
volume of the Kähler class c1(L). Deriving volume upper bounds for ample line
bundles is of interest by itself, as it is closely related to the boundedness problem in
algebraic geometry. For instance, by bounding (−KX)n from above, it was shown
by Kollár–Miyaoka–Mori [29] that n-dimensional Fano manifolds form a bounded
family. However to the author’s knowledge, a sharp volume upper bound for −KX

is still missing in the literature. It was once believed that one always has

(1.6) (−KX)n ≤ (n+ 1)n

with equality if and only if X = Pn. But it turns out that one can easily disprove
this by looking at projective bundles over Fano manifolds (see [2, 13]). However
when rk Pic(X) = 1, it is still an open problem whether (1.6) holds or not (cf.
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[28, 21]). Note that when X is K-semistable, (1.6) has been recently estabilished
by K. Fujita [16] (see also Liu [36] for volume upper bounds of Q-Fano varieties).

For general ample line bundles, one can easily bound Vol(L) in terms of the
greatest Ricci lower bound. Indeed, pick ω ∈ 2πc1(L) such that

Ric (ω) ≥ µω.

Applying Bishop–Gromov theorem to (X,ω), one can quickly derive (by letting
µ→ β(X,L))

(1.7) β(X,L)nVol(L) ≤ 2n+1(n!)2(2n− 1)n

(2n)!
.

However, as alluded to at the very beginning, this bound is not sharp in the Käh-
lerian world. To get sharp bound, one needs to exploit the Kähler condition. Our
first main result is the following

Theorem 1.3. Let L be an ample line bundle on a Fano manifold X. Then one
has

(1.8) I(L)β(X,L)n+1Vol(L) ≤ (n+ 1)n+1.

Remark 1.4. Notice that I(L)β(X,L)n+1Vol(L) is scaling invariant, so the con-
clusion of Theorem 1.3 also holds for any ample Q-line bundle.

The bound (1.8) is sharp, in the sense that X = Pn achieves the equality. An
easy consequence of Theorem 1.3 is the following

Corollary 1.5. Let L be an ample line bundle on a Fano manifold X. Then one
has

I(L)β(X,L) ≤ n+ 1.

Let us also say a few words about the lower bound of I(X)β(X,L). When
L = −KX , by utilizing the boundedness of Fano manifolds [29] and the α-invariant
of Tian [54], it follows that I(X)β(X) ≥ c(n) > 0 for some dimensional constant
c(n). However for general ample line bundles, there is no universal positive lower
bound for I(L)β(X,L), as one can easily find a sequence Li in the ample cone with
I(Li) = 1 and ε(X,Li)→ 0, so that β(X,Li)→ 0.

When L = −KX and β(X) = 1 (i.e., X is K-semistable [34]), (1.8) reduces to
the inequality:

I(X)(−KX)n ≤ (n+ 1)n+1,

which was derived in [19, (2.22)] under the assumption that X is Kähler–Einstein
using Sasakian geometry. In fact we will use a similar method to prove (1.8). More
precisely, the strategy is to look at the affine cone

V := Spec
⊕
m≥0

H0(X,mL).

Using Calabi ansatz, one can construct a cone metric on V with non-negative Ricci
curvature. Then we apply the comparison theorem of Bishop–Gromov to the link
of this metric cone to get (1.8).
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Theorem 1.6. Let L be an ample Q-line bundle on a Fano manifold X. Then one
has
I(L)β(X,L)n+1Vol(L) = (n+ 1)n+1, when X ∼= Pn;

I(L)β(X,L)n+1Vol(L) = 2nn+1, when X ∼= Q ⊂ Pn+1 is a smooth quadric;
I(L)β(X,L)n+1Vol(L) < n(n+ 1)n, otherwise.

The proof of this result is in fact a combination of Theorem 3.1, (3.2) and some
classical results in algebraic geometry (cf. [18, 23, 26]). As we shall see, Theorem
1.6 is also related to the ordinary double point (ODP) conjecture [48, Conjecture
1.2].

Organization. The rest of this paper is organized as follows. In Section 2 we
review a classical setting where one can apply the Calabi ansatz and then construct
a family of metric cones to prove Theorem 1.3 and Corollary 1.5. In Section 3, the
equality case of (1.8) is investigated and Theorem 1.6 is proved. In Section 4 we
connect our discussions to the normalized volume introduced by Li [36].

Acknowledgments. The author would like to thank Yanir Rubinstein for many
fruitful discussions on the Calabi ansatz. The author is sponsored by the China
post-doctoral grant BX20190014.

2. Calabi ansatz and metric cones

In this section we use Calabi ansatz to prove Theorem 1.3.

2.1. Calabi ansatz on the total space of line bundles.
For readers’ convenience, let us review a well-studied and powerful construction,
pioneered by Calabi [7, 8], which can effectively produce various explicit examples
of canonical metrics in Kähler geometry. The idea is to work on complex manifolds
with certain symmetries so that one can reduce geometric PDEs to simple ODEs.
This approach is often referred to as the Calabi ansatz in the literature, which has
been studied and generalzed to different extent by many authors; see e.g., [20] for
some general discussions and historical overviews.

For our purpose, we will work on the total space of line bundles over Kähler
manifolds. The goal is to construct canonical metrics on this space. Our compu-
tation will follow the exposition of [53, Section 4.4]. See also [27, 47, 56] and the
references therein for similar treatment.

Let (X,ω) be an n-dimensional compact Kähler manifold, where ω is a Kähler
form on X. Let L → X be a holomorphic line bundle equipped with a smooth
Hermitian metric h such that its curvature form Rh satisfies

(2.1) Rh :=
√
−1∂∂̄ log h−1 = λω

for some constant λ 6= 0. Let
L−1

π−→ X

be the dual bundle of L. whose zero section will be denoted by E0 (so E0 is a copy
of X sitting inside the total space L−1). In the following we will construct a Kähler
metric on L−1\{E0}.

The idea is to make use of the fiberwise norm on L−1 induced by h−1. We put

s(t) := log ||t||2 = log h−1(t, t), for t ∈ L−1\{E0}.
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So s is a globally defined function on L−1\{E0}. The goal is to construct a Kähler
metric η on L−1\{E0} of the form

(2.2) η =
√
−1∂∂̄f(s),

where f is a function to be determined.
We will carry out the computation locally. Choose p ∈ X and let

(
U, z =

(z1, ..., zn)
)
be a local coordinate system around p such that ω can be expressed by

a Kähler potential:

(2.3) ω =
√
−1∂∂̄(P (z)),

where
P (z) = |z|2 +O(|z|4).

Moreover we may assume that L−1 is trivialized over U by a nowhere vanishing
holomorphic section σ ∈ Γ(U,L−1) such that

||σ||2h−1 = h−1(σ, σ) = eλP (z).

Under this trivialization, we have an identification:

(2.4) π−1(U) ∼= U × C.
Let w be the holomorphic coordinate function in the fiber direction. So we have

(2.5) s = log(|w|2eλP (z)) on U × C∗.
Such a choice of coordinates has the advantage that, on the fiber π−1(p) over p,
one has

(2.6) ∂P (z) = ∂P (z) = 0.

So direct computation gives

(2.7) η =
√
−1∂∂̄f(s) = λf ′π∗ω + f ′′

√
−1dw ∧ dw
|w|2

.

over p. Thus we get

(2.8) ηn+1 =
(n+ 1)λn(f ′)nf ′′

|w|2
(π∗ω)n ∧

√
−1dw ∧ dw.

Now observe that this expression of volume form is true not just over p. Indeed,
if we choose a different trivialization w′ = q(z)w, the expression (2.8) remains the
same. So (2.8) holds everywhere on U × C∗.

Expression (2.7) indicates that, to make η positively definite, f should be a
strictly convex function with f ′ > 0. So let us introduce

(2.9) τ = f ′(s), ϕ(τ) = f ′′(s).

Then, over p, the Ricci form is given by

(2.10)

Ric (η) = −
√
−1∂∂̄ log det(η)

= π∗Ric (ω)−
(
nλ

ϕ

τ
+ λϕ′

)
π∗ω

− ϕ
(
n
ϕ

τ
+ ϕ′

)′√−1dw ∧ dw
|w|2

.

To build a metric η with special geometric features, it is natural to impose some
conditions on the base metric ω. It turns out that there are several ways to do this.
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(1) The most commonly used condition for ω is the Kähler–Einstein condition.
Namely, we assume

(2.11) Ric (ω) = µω

for some constant µ. In this setting, (2.10) becomes

(2.12)
Ric (η) =

(
µ− nλϕ

τ
− λϕ′

)
π∗ω

− ϕ
(
n
ϕ

τ
+ ϕ′

)′√−1dw ∧ dw
|w|2

.

From this we easily get the expression of the scalar curvature

(2.13) S(η) =
1

τn

(
µτn+1

(n+ 1)λ
− τnϕ

)′′
,

which now holds everywhere on L−1\{E0}.
(2) A less common condition for ω is the Kähler–Einstein edge condition stud-

ied in [42], by which we mean

(2.14) Ric (ω) = µω + 2π(1− β)[D]

for some constant µ, cone angle β ∈ (0, 1] and a smooth divisor D on X.
We put

D := π∗D.

In this case, the corresponding Hermitian metric h satisfying (2.1) is not
supposed to smooth, but one can still derive (2.10) in the current sense:

(2.15)
Ric (η) =

(
µ− nλϕ

τ
− λϕ′

)
π∗ω + 2π(1− β)[D]

− ϕ
(
n
ϕ

τ
+ ϕ′

)′√−1dw ∧ dw
|w|2

.

This allows one to construct Kähler–Einstein edge metrics, which will be
explored in a forthcoming paper [46].

(3) One can also consider the twisted Kähler–Einstein condition. More pre-
cisely, we assume

(2.16) Ric (ω) = µω + α

for some constant µ and some non-negative (1, 1)-form α on X, in which
case, (2.10) reads

(2.17)
Ric (η) =

(
µ− nλϕ

τ
− λϕ′

)
π∗ω + π∗α

− ϕ
(
n
ϕ

τ
+ ϕ′

)′√−1dw ∧ dw
|w|2

.

This case will be particularly useful for the proof of Theorem 1.3.
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2.2. Metric cone and normalized volume.
In what follows we will additionally assume that L is ample (so that λ > 0). The
goal of this part is review a standard construction of a family of metric cones over
the circle bundle of X (see also [42]). The resulting metric cone will be denoted by
(V, o∗), where o∗ is the vertex.

Recall that when X is Fano and ω is Kähler–Einstein, a classical result of
Kobayashi [25] gurantees the existence of Sasaki–Einstein metrics on certain cir-
cle bundles over X, which turns out can be constructed using Calabi unsatz (we
refer the reader to the survey [50] for more information on this subject). For com-
pleteness we will include the details of this construction and then relate it to the
comparison geometry and as a byproduct of these general discussions, we prove
Theorem 1.3. See also [37] for a closely related discussion of this subject from an
algebro-geometric viewpoint.

To construct a metric cone (V, o∗), we use the following observation. Geometri-
cally we want E0 to correspond to the vertex o∗ of metric cone (namely, we want
E0 to shrink to a point). To make this happen, we go back to the local expression
(2.7). As |w| ↘ 0, we want τ ↘ 0, so that η degenerates along E0. Moreover, to
make the metric complete near the vertex (where |w| � 1), one should have

(2.18) lim
τ→0+

ϕ(τ) = 0.

On the other hand, it is tempting to make the Ricci form Ric (η) as simple as
possible. So let us look at its expression (2.10). A natural candidate of ϕ that can
simplify (2.10) is supposed to satisfy the following ODE:

(2.19) n
ϕ

τ
+ ϕ′ = Const.

Using the boundary condition (2.18), we get

(2.20) ϕ(τ) = aτ,

for some a > 0, in which case, (2.10) reduces to (see also [42, Lemma 1])

(2.21) Ric (η) = π∗
(
Ric (ω)− a(n+ 1)λω

)
,

so that Ric (η) is captured by the Ricci curvature of base manifold (X,ω) in a simple
manner. Now using (2.9) and (2.20), we easily recover

f(s) = Ceas,

for some constant C > 0. By rescaling f , we may assume C = 1
2 so that

(2.22) f(s) = eas/2

and

(2.23) η =

√
−1

2
∂∂̄eas,

where a > 0 is a parameter.
In the following, we show that such η indeed gives rise to a metric cone (V, o∗).

To see this, we introduce a new variable

r ∈ (0,∞)

such that

(2.24) r2 = eas.
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Then r is also a globally defined function on L−1\{E0}. In our chosen coordinate
system, we have

(2.25) r2 = |w|2aeaλP (z).

We shall show the following

Proposition 2.1 ([5, 50]). Let η be the Kähler form defined by (2.23). For any
a > 0, the Riemannian metric gη associated to η is a warped product:

(2.26) gη = dr ⊗ dr + r2g
M
,

where g
M

is a Riemannian metric on the circle bundle M := {r = 1} of X, so that
(L−1\{E0}, gη) indeed defines a metric cone.

Proof. We will prove this by explicitly calculating gη in local coordinates (recall
(2.4)). Indeed, over U we have

(2.27)

η =

√
−1

2
∂∂̄r2 =

√
−1

2
∂∂̄
(
|w|2aeaλP (z)

)
=

√
−1r2

2

(
a2
dw ∧ dw
|w|2

+ aλ
∂2P

∂zi∂zj
dzi ∧ dzj

+ a2λ2
∂P

∂zi

∂P

∂zj
dzi ∧ dzj + a2λ

(
∂P

∂zi
dzi ∧

dw

w
+
∂P

∂zj

dw

w
∧ dzj

))

=
aλr2

2
π∗ω +

a2r2

2

√
−1dw ∧ dw
|w|2

+

√
−1a2λ2r2

2
PiPjdzi ∧ dzj

+

√
−1a2λr2

2

(
Pidzi ∧

dw

w
+ Pj

dw

w
∧ dzj

)
.

Then the corresponding Riemannian metric tensor gη is given by
(2.28)

gη =
aλr2

2
π∗gω +

a2r2

2

dw ⊗ dw + dw ⊗ dw
|w|2

+
a2λ2r2

2
PiPj

(
dzi ⊗ dzj + dzj ⊗ dzi

)
+
a2λr2

2

(
Pi
dzi ⊗ dw + dw ⊗ dzi

w
+ Pj

dzj ⊗ dw + dw ⊗ dzj
w

)
.

Now we write w using polar coordinates:

(2.29)
w = |w|e

√
−1θ

= r1/ae−λP/2+
√
−1θ, θ ∈ [0, 2π).

Here we used (2.25). From (2.29) we deduce

(2.30)

{
dw
w = 1

ardr −
λ
2 dP +

√
−1dθ,

dw
w = 1

ardr −
λ
2 dP −

√
−1dθ.
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Plugging (2.30) into (2.28), we obtain
(2.31)

gη =
aλr2

2
π∗gω +

a2r2

2

(
2

a2r2
dr ⊗ dr − λ

ar
(dr ⊗ dP + dP ⊗ dr) +

λ2

2
dP ⊗ dP + 2dθ ⊗ dθ

)
+
a2λ2r2

2
PiPj

(
dzi ⊗ dzj + dzj ⊗ dzi

)
+
a2λr2

2

(
1

ar
(dr ⊗ dP + dP ⊗ dr)− λdP ⊗ dP

+
√
−1

(
Pj(dzj ⊗ dθ + dθ ⊗ dzj)− Pi(dzi ⊗ dθ + dθ ⊗ dzi)

))

= dr ⊗ dr + r2

[
aλ

2
π∗gω + a2dθ ⊗ dθ − a2λ2

4
dP ⊗ dP +

a2λ2

2
PiPj

(
dzi ⊗ dzj + dzj ⊗ dzi

)

+

√
−1a2λ

2

(
Pj(dzj ⊗ dθ + dθ ⊗ dzj)− Pi(dzi ⊗ dθ + dθ ⊗ dzi)

)]

= dr ⊗ dr + r2

[
aλ

2
π∗gω + a2

(
dθ + λdCP

)
⊗
(
dθ + λdCP

)]
,

where

dC :=

√
−1

2
(∂ − ∂).

One can easily verify that, the real 1-form

(2.32) φ := dθ + λdCP

is globally defined on L−1\{E0}. Indeed, given a different trivialization σ′ := q(z)σ,
where q(z) is some locally defined nowhere vanishing holomorphic function on X,
one has w′ = q−1w and P ′ = P + 1

λ log |q|2. The argument θ′ of w′ can be expressed
by θ′ = θ +

√
−1
2 (log q − log q). Then one has

dθ′ + λdCP ′ = dθ + λdCP +

√
−1

2
d(log q − log q) + dC log |q|2

= dθ + λdCP +

√
−1

2

(
∂q

q
− ∂q

q
+
∂q

q
− ∂q

q

)
= dθ + λdCP.

So (2.32) defines a global 1-form on L−1\{E0}. Thus we obtain

(2.33) gη = dr ⊗ dr + r2
(
aλ

2
π∗gω + a2φ⊗ φ

)
.

Now let

(2.34) M := {r = 1}

be the circle bundle over X and we define a 2-form

(2.35) g
M

:=
aλ

2
π∗gω + a2φ⊗ φ.

By (2.31), g
M

can be locally expressed as

(2.36) g
M

=
aλ

2
π∗gω + a2

(
dθ + λdCP

)
⊗
(
dθ + λdCP

)
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This implies that g
M

is a well defined symmetric 2-tensor when restricted to the
circle bundle M since (z1, ..., zn, θ) forms a local coordinate system of M over U ⊂
X. Moreover g

M
is clearly positively definite when restricted to M . Thus g

M

induces a Riemannian metric on M , also denoted g
M

by abuse of notation.
In summery, the Kähler metric gη we deduced from the ODE (2.19) defines a

cone metric on L−1\{E0}, which degenerates E0 to the vertex of the metric cone.
Moreover gη takes the form

gη = dr ⊗ dr + r2g
M
,

where g
M
, given by (2.35), is a Riemannian metric defined on the circle bundle M

of X. The proof is complete.
�

In particular, in the language of Sasakian geometry, (M, g
M

) is a regular Sasakian
manifold. Note that in the work of Kobayashi [25], the 1-form φ is interpreted as a
connection 1-form on M .

For any a > 0, the metric cone constructed above will be denoted by (Va, o
∗),

where o∗ the vertex. The manifoldM is called the link of (Va, o
∗). Namely we have

(2.37) Va = C(M, g
M

) := (R+ ×M,dr2 + r2g
M

) ∪ {o∗}.

By the Gauss–Codazzi equations, one has

(2.38) Ric (gη) = Ric (g
M

)− 2ng
M
.

This relates the Ricci curvature of (Va, o
∗) to that of M .

As we shall see below, the geometry of (Va, o
∗) depends on the parameter a,

since one can easily calculate the volume of the unit ball B1(o∗) of the metric cone.

Proposition 2.2 ([42]). The volume of the unit ball B1(o∗) centered at the vertex
of (Va, o

∗) is given by

(2.39) Vol(B1(o∗)) =
(aπ)n+1Vol(L)

(n+ 1)!
.

Proof. We use ηn+1 to compute the volume. Plugging (2.22) into (2.8) and using
(2.5), we obtain

ηn+1 =
(n+ 1)eaλ(n+1)Pλnan+2

2n+1
(π∗ω)n ∧

√
−1|w|2a(n+1)−2dw ∧ dw

Thus we get

Vol(B1(o∗)) =

∫
r≤1

ηn+1

(n+ 1)!

(2.25)
=

∫
X

∫
|w|≤e−λP/2

(n+ 1)eaλ(n+1)Pλnan+2

2n+1(n+ 1)!
(π∗ω)n ∧

√
−1|w|2a(n+1)−2dw ∧ dw

=

∫
X

2πan+1λn

2n+1(n+ 1)!
ωn

(2.1)
=

(aπ)n+1Vol(L)

(n+ 1)!
,

Here we used the fact that ω ∈ 2πc1(L)/λ.
�
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From Proposition 2.2 we deduce the nomalized volume κ(Va, o
∗) (the ratio be-

tween the cone volume and the Euclidean volume; see [43, (5.25)]) of the metric
cone:

(2.40) κ(Va, o
∗) :=

Vol(B1(o∗))

Vol(B1(02n+2))
= an+1Vol(L).

Here Vol(B1(02n+2)) = πn+1/(n + 1)! denotes the volume of the Euclidean unit
(2n + 2)-ball. In particular, the normalized volume κ(Va, o

∗) only depends on
Vol(L) and the parameter a.

Example 2.3.
(1) The simplest example that fits into this framework is X := Pn. We take

ω := ωFS ∈ OPn(1). Let L := OPn(1) and h−1 be the standard Hermitian
metric on the tautological line bundle L−1 = OPn(−1). Furthermore, we
choose a = 1. In this case, L−1\{E0} ∼= Cn+1\{0} and M = S2n+1 (since
in this case r is the distance function to the origin 0 ∈ Cn+1). Moreover
η =
√
−1∂∂̄r2/2 is simply the standard flat Kähler form on Cn+1 and g

M

is the standard round metric on S2n+1. One also has Vol(L) = 1. Plugging
this into (2.39), we obtain

Vol(B1(o∗)) =
πn+1

(n+ 1)!
,

which is, of course, the volume of the unit (2n + 2)-ball in the Euclidean
space.

(2) A more interesting example is the Stenzel cone [51]. We take

X := {X2
0 + ...+X2

n+1 = 0} ⊂ Pn+1

to be a smooth quadric in Pn+1. Then X is a homogeneous Kähler–Einstein
Fano manifold. Let L := OX(1). Note that, by adjunction, one has −KX =
nL. We may choose ω ∈ 2πc1(L) such that Ric (ω) = nω. Choose a Hermit-
ian metric h on L such that Rh = ω. Now we pick a = n

n+1 . Then (2.23)
yeilds a Calabi–Yau cone (V, o∗), as in this case (2.21) gives Ric (η) = 0.
This cone metric η on V \{o∗} can be thought of as a Ricci flat metric
defined on the germ of an ordinary double point:

{X2
0 + ...+X2

n+1 = 0} ⊂ Cn+2.

Note that Vol(L) = 2. Using (2.40), we obtain the normalized volume:

κ(V, o∗) = 2
( n

n+ 1

)n+1
.

(3) More generally, let X be a Fano manifold admitting a Kähler–Einstein
metric ω ∈ 2πc1(X) such that Ric (ω) = ω. Let L be an ample line bundle
on X equipped with a Hermitian metric h such that Rh = λω for some
λ > 0. We choose a = 1/((n+ 1)λ). Then (2.23) yeilds a Calabi–Yau cone
(V, o∗) with Ric (η) = 0.

An interesting consequence of (2.40) is the the following result (see also [19,
(2.22)]), which can be thought of as a weak version of the volume upper bound for
Kähler–Einstein Fano varieties studied by Fujita [16] and Liu [41].
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Proposition 2.4 ([19]). There exists a dimensional constant ε(n) ∈ (0, 1) such that
the following holds. Let X be an n-dimensional Kähler–Einstein Fano manifold. Let
I(X) be its Fano index. Then one has{

I(X)(−KX)n = (n+ 1)n+1, when X = Pn

I(X)(−KX)n ≤
(
1− ε(n)

)
(n+ 1)n+1, otherwise.

Proof. By definition of the Fano index, we may find an ample line bundle L such
that

−KX = I(X)L.

By the Kähler–Einstein condition, we may choose a Kähler form ω ∈ 2πc1(L) such
that

Ric (ω) = I(X)ω.

Pick a Hermitian metric h on L such that

Rh = ω.

Given these data, one can run the above ODE construction to obtain a family of
metric cones (Va, o

∗). Now we choose

a = I(X)/(n+ 1).

Then (2.21) gives
Ric (η) = 0,

i.e., (V, o∗) is a Calabi–Yau cone. So (2.38) implies that, the link M is a (2n+ 1)-
dimensional Einstein manifold with Enstein constant 2n

Now applying the Bishop–Gromov theorem to M , one has

κ(Va, o
∗) ≤ 1,

and the equality holds if and only if (Va, o
∗) is isometric to the Euclidean space Cn,

in which case, X must be Pn. Indeed, as we have seen in Example 2.3.1, X = Pn
implies κ(Va, o

∗) = 1. Conversely, when κ(Va, o
∗) = 1, the S1-bundle (M, g

M
) is

isometric to the round sphere S2n+1. Then one can compute the Reeb vector field,
which generates the Hopf S1-action on S2n+1, so that the orbit space is simply
Pn+1.

Now let us turn to the case where κ(Va, o
∗) < 1. In this case the link M of the

Calabi–Yau cone (Va, o
∗) is an (2n+1)-dimensional Einstein manifold with Enstein

constant 2n, but not isometric to the round sphere S2n+1. Then the well-known
sphere gap theorem (see e.g., [9, Theorem 4.3]) guarantees that there is an Anderson
constant ε(n) ∈ (0, 1) such that

Vol(M, g
M

) ≤
(
1− ε(n)

)
Vol(S2n+1, g

S2n+1 ),

so that
κ ≤ 1− ε(n).

This completes the proof. �

Remark 2.5. In fact the gap ε(n) can be specified; see Corollary 3.5.

Similar strategy shows the following

Theorem 2.6 (=Theorem 1.3). Let L be an ample line bundle on a Fano manifold
X. Then one has

I(L)β(X,L)n+1Vol(L) ≤ (n+ 1)n+1.
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Proof. As pointed out in Remark 1.4, by rescaling, we might as well assume

I(L) = 1.

Our goal is to prove
β(X,L)n+1Vol(L) ≤ (n+ 1)n+1.

Given any µ ∈ (0, β(X,L)), choose ω ∈ 2πc1(L) such that

Ric (ω) ≥ µω.
Pick a Hermitian metric on L with Rh = ω. Then the ODE construction gives us
a family of metric cones (Va, o

∗) depending on the parameter a > 0. Let us choose

a =
µ

n+ 1
,

in which case, (2.21) implies

Ric (η) = π∗
(
Ric (ω)− µω

)
≥ 0.

So from (2.38) we deduce
Ric (g

M
) ≥ 2ng

M
.

Applying Bishop–Gromov theorem to M , one has (recall (2.40))

κ(Va, o
∗) = (µ/n+ 1)n+1Vol(L) ≤ 1,

so that
µn+1Vol(L) ≤ (n+ 1)n+1.

Letting µ→ β(X,L), we get

β(X,L)n+1Vol(L) ≤ (n+ 1)n+1,

as desired.
�

As an immediate consequence, we have

Corollary 2.7 (=Corollary 1.5). Let L be an ample Q-line bundle on a Fano
manifold X, then one has

I(L)β(X,L) ≤ n+ 1.

Proof. By rescaling, we assume
I(L) = 1.

In this case L is an integral ample line bundle, so

Vol(L) = Ln ≥ 1

is a positive integer. Then Theorem 1.3 implies that

β(X,L) ≤ n+ 1,

so that
I(L)β(X,L) ≤ n+ 1

holds for arbitrary ample Q-line bundle L by scailing invariance. �

3. Proof of Theorem 1.6

In contrast to Section 2, the discussion in this part will be purely algebraic. The
main goal is to prove Theorem 1.6.
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3.1. The δ-invariant.
It turns out that the δ-invariant introduced recently in the literature is the right
notion for us, which we now describe.

Following [17, 4], the δ-invariant of L is defined by

(3.1) δ(X,L) := inf
v∈ValX

AX(v)

SL(v)
.

Here ValX denotes the space of valuations over X, AX(v) denotes the log discrep-
ancy of v, and SL(v) denotes the expected vanishing order of L with respect to v.
Note that δ-invariant is also called stability threshold in the literature, which plays
important roles in the study of K-stability and has attracted intensive research
attentions. The following result proved in [3] (see also [11, Theorem 5.7]), which
gives an geometric interpretation of the δ-invariants on Fano manifolds.

Theorem 3.1. Let L be an ample line bundle on a Fano manifold X. Then one
has

β(X,L) = min{ε(X,L), δ(X,L)}.

Regarding the δ-invariant, [4, Theorem D] implies the following volume upper
bound :

(3.2) δ(X,L)nVol(L) ≤ (n+ 1)n.

This inequality reveals the deep relationhip between singularities and volumes of
linear systems.

With the help of δ-invariant, the statement of Theorem 1.3 can now be enhanced
as follows.

We begin with the following result, which characterizes the equality of (1.8).

Proposition 3.2. Let L be an ample Q-line bundle on a Fano manifold X with

I(L)β(X,L)n+1Vol(L) = (n+ 1)n+1,

then X is biholomorphic to Pn.

Proof. By rescaling, we might as well assume 1

β(X,L) = 1.

By Theorem 3.1, we deduce that

δ(X,L) ≥ 1.

Thus (3.2) implies
Vol(L) ≤ (n+ 1)n.

On the other hand, by assumption, we have

I(L)Vol(L) = (n+ 1)n+1.

So we find that
I(L) ≥ n+ 1.

Thus Corollary 1.5 forces that

I(L) = n+ 1, Vol(L) = (n+ 1)n and δ(X,L) = β(X,L) = 1.

1It is possible that β(X,L) is irrational before rescaling, but this will not cause issues for our
argument. In fact we believe that one always has β(X,L) ∈ Q.
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In particular, L is an integral ample line bundle with index n+ 1. We put

L = (n+ 1)H and N := −KX − L.
Then H is ample and N is nef (as ε(X,L) ≥ β(X,L) = 1).

We claim that N is a trivial line bundle. Suppose otherwise, then one has

H0
(
KX + (n+ 1)H

)
= H0(−N) = 0.

Meanwhile, by Kodaira vanishing, we have

Hi(KX + kH) = 0, for any i ≥ 1 and k ≥ 1.

Thus for k ∈ {1, 2, ..., n+ 1}, the Euler characteristic of KX + kH satisfies

χ(KX + kH) = h0(KX + kH) = h0
(
(k − n− 1)H −N

)
= 0.

Then Riemann–Roch implies that χ(KX + kH) is a degree n polynomial in k with
n+ 1 roots, which forces that

χ(KX + kH) ≡ 0

for any integer k, contradicting the ampleness of H. So N is trivial as claimed.
Thus we have

L = −KX ,

so that the Fano index satisfies

I(X) = I(L) = n+ 1.

Then the criterion of Kobayashi–Ochiai [26] guarantees that X is biholomorphic to
the complex projective space. �

Note that the above proof crucially used Theorem 3.1, (3.2) and the index I(L).
In fact, regarding the index I(L), one has the following result, which refines Corol-
lary 1.5.

Lemma 3.3 ([18, 23]). Let L be an ample Q-line bundle on a Fano manifold X,
then one has

I(L)ε(X,L) = n+ 1, when X ∼= Pn;

I(L)ε(X,L) = n, when X ∼= Q ⊂ Pn+1 is a smooth quadric;
I(L)ε(X,L) < n, otherwise.

Proof. We sketh the proof for readers’ convenience. By rescaling, we assume

ε(X,L) = 1.

Let L = I(L)H for some ample line bundle H. It was shown in [18, 23] that, if
KX +nH is not nef, then X ∼= Pn. On the other hand, the assumption ε(X,L) = 1
says that −KX − I(L)H is nef.

If I(L) > n, then −KX − nH is ample so KX + nH cannot be nef and hence
X ∼= Pn, in which case L = −KX and I(L) = n+ 1.

If I(L) = n, then −KX−nH is nef. Meanwhile, in this case X 6= Pn soK+nH is
also nef. This implies that −KX −nH is numerically trivial and hence −KX ∼ nH
(numerical equivalence is the same as linear equivalence on Fano manifolds), so that
[26] guarantees that X is a smooth quadric in Pn+1.

�

Now we are ready to prove
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Theorem 3.4 (=Theorem 1.6). Let L be an ample Q-line bundle on a Fano man-
ifold X, then one has
I(L)β(X,L)n+1Vol(L) = (n+ 1)n+1, when X ∼= Pn;

I(L)β(X,L)n+1Vol(L) = 2nn+1, when X ∼= Q ⊂ Pn+1 is a smooth quadric;
I(L)β(X,L)n+1Vol(L) < n(n+ 1)n, otherwise.

Proof. By rescaling we assume

β(X,L) = 1.

When X ∼= Pn or X ∼= Q ⊂ Pn+1, we have ε(X,L) = β(X,L) = 1 by the existence
of KE metrics. Otherwise, one has ε(X,L) ≥ 1. So Lemma 3.3 implies

I(X) = n+ 1, when X ∼= Pn;

I(X) = n, when X ∼= Q ⊂ Pn+1 is a smooth quadric;
I(X) < n, otherwise.

On the other hand, Theorem 3.1 gives δ(X,L) ≥ 1, then (3.2) implies

Vol(L) ≤ (n+ 1)n.

So the result follows.
�

As a simple consequence, one can specify the Anderson gap ε(n) appearing in
Proposition 2.4.

Corollary 3.5. One can choose the gap ε(n) in Proposition 2.4 to be

ε(n) = 1− n

n+ 1

Note that this also follows easily from the volume upper bounds derived in [16].

Remark 3.6. The ordinary double point conjecture [48, Conjecture 1.2] expects
that one can even take

ε(n) = 1− 2(
n

n+ 1
)n+1.

4. Relation with the algebraic normalized volume

In this part we review the normalized volume introduced by Li [36] and then make
some connections and remarks (see also [22, Appendix C]). To be in accordance
with previous discussions, we will restrict ourselves to the smooth Fano setting.
For general log Q-Fano cases, we refer to [37].

Let X be an n-dimensional Fano manifold. Suppose that

(4.1) L = −λKX

is an ample line bundle for some λ ∈ Q+. Put

(4.2) R(X,L) :=
⊕
k≥0

H0(X, kL)

and

(4.3) V := SpecR(X,L).
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Then V is an affine variety obtained by contracting the zero section E0 of the total
space L−1. In particular, V has an isolated singularity o∗, called the vertex of the
affine cone V . See the figure below for an intuitive illustration.

Figure 1. The affine cone (V, o∗)

Note that o∗ is an isolated klt singularity of V . Indeed, we put

Ṽ := L−1,

then Ṽ ε−→ V resolves the singularity o∗ of V and one can write

KṼ = ε∗KV + xE0

for some x ∈ Q. By adjunction, we get

−KE0 = (x+ 1)OṼ (E0)|E0
.

Using the fact that E0 is a copy of X sitting inside Ṽ with normal bundle L−1, one
simply has (recall (4.1))

x =
1

λ
− 1 > −1,

so that

(4.4) AV (E0) =
1

λ
> 0,

and hence o∗ is a klt singularity. Here AV (·) denotes the log discrepancy of divisors
over V .

For the affine cone (V, o∗), Li [36] defined a purely algebraic notion called the
normalized volume, denoted V̂ol(V, o∗), by

V̂ol(V, o∗) := inf
v∈ValV,o∗

AV (v)n+1 ·VolV,o∗(v),

where ValV,o∗ denotes the space of valuations of V centered at o∗, AV (v) denotes
the discrepancy of the valuation v and

VolV,o∗(v) := lim sup
m→∞

length(OV,o∗/am(v))

mn+1/(n+ 1)!

denotes the volume of v (see [37] for precise meanings of these notions).
The resolution Ṽ

ε−→ V gives a natural divisorial valuation ordE0
∈ ValV,o∗ , in

which case, one has

AV (ordE0
) =

1

a
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and

VolV,o∗(ordE0
) = lim sup

m→∞

h0
(
Ṽ ,OṼ

(
− (m+ 1)E0

))
mn+1/(n+ 1)!

.

Using the exact sequence

0→ OṼ (−(m+ 1)E0)→ OṼ (−mE0)→ OE0(−mE0)→ 0,

and R1ε
(
OṼ (−mE0)

)
= 0, one obtains

h0
(
Ṽ ,OṼ

(
−mE0

))
− h0

(
Ṽ ,OṼ

(
− (m+ 1)E0

))
= h0

(
E0,−OE0

(
−mE0

))
,

so that

(4.5)

VolV,o∗(ordE0) = lim sup
m→∞

∑m
i=0 h

0(E0,OE0
(−iE0))

mn+1/(n+ 1)!

= lim sup
m→∞

∑m
i=0 h

0(X, i(−λKX))

mn+1/(n+ 1)!

= lim sup
m→∞

n+ 1

m
·
∑m
i=0 h

0(E0,
i
m · (−λmKX))

mn/n!

= (n+ 1)

∫ 1

0

Vol
(
X, t(−λKX)

)
dt

= (n+ 1)

∫ 1

0

(λt)n(−KX)ndt

= λn(−KX)n.

This gives

(4.6) V̂ol(V, o∗) ≤
(
AV (ordE0)

)n+1 ·VolV,o∗(ordE0) =
(−KX)n

λ
.

Moreover, by [35, Theorem 1.1], when X is K-semistable (e.g., when X is Kähler–
Einstein), (4.6) is in fact an equality.

Now assume that X is Kähler–Einstein, so that

(4.7) V̂ol(V, o∗) =
(−KX)n

λ
.

Recall that in this case (V, o∗) itself is also a Calabi–Yau cone with volume ratio
(see Example 2.3.3)

κ(V, o∗) =
Ln

((n+ 1)λ)n+1
=

(−KX)n

(n+ 1)n+1λ
.

So one reads

(4.8) V̂ol(V, o∗) = (n+ 1)n+1κ(V, o∗),

which relates the normalized volume of the affine cone (V, o∗) to its volume ratio
as a Calabi–Yau metric cone. We refer the reader to [22, Appendix C] and [39,
Corollary 5.7] for more general versions of this equality.
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