
A NOTE ON FILTRATIONS AND CHOW STABILITY

KEWEI ZHANG

Abstract. In this note we express the Chow weight using filtrations, which in turn is related to the

slope at infinity of the quantized K-energy along Bergman geodesic rays.
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1. Introduction

This note is motivated by the problem of finding constant scalar curvatuer Kähler metrics on polar-
ized Kähler manifolds. The existence of such metrics is conjectured to be equivalent to certain algebro-
geometric notion called K-stability, which goes back to Tian [27] and Donaldson [12]. For a comprehensive
discussion of this subject, we refer the reader to Boucksom–Hisamoto–Jonsson [5]. In this note we will
revisit a closely related and well-understood notion, i.e., Chow stability, which can be viewed as a “quan-
tization” of K-stability. One aim of this note is to reformulate Chow stability using filtrations and it turns
out that such consideration naturally relates Chow stability to the slope stability of certain quantized
K-energy. Even though we believe that these contents are well-known to experts (see e.g., Székelyhid [26]
for the same kind of treatment), we decide to revisit the details from a relatively more modern viewpoint.
Anyhow, this treatment indeed has some consequences that might look a bit surprising at first glance;
see for instance Corollary 1.11, which seems to be new. Another goal of this note is to study the rela-
tion between Chow stability and K-stability. This is of course an old topic. But as we shall see, using
filtrations, one can extract some useful information that might serve as a new perspective to attack some
open problems in this field. Some new stability thresholds characterizing Chow stability and K-stability
are also introduced in the end.

1.1. Conventions. Let (X,L) be a polarized Kähler manifold of dimension n, where L is an ample line
bundle. For simplicity we will further assume that mL is very ample and

Hi(X,mL) = 0 for all i ≥ 1

whenever m ≥ 1. Set

R := R(X,L) :=
⊕
m∈N

Rm,

where Rm := H0(X,mL). Also put

dm := dimRm.

After replacing L by a suficiently divisible multiple we may (and will) assume that the subring

R(r) := R(X, rL)

is generated in degree 1 for any r ∈ N>0. These harmless assumptions will make life a lot easier.
1
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1.2. Filtrations and test configurations. We recall some standard facts about filtrations and test
configurations. For more details, we refer to [30, 26] and [5, §2].

Definition 1.1. (Filtration) We call F a filtration of R if for any λ ∈ R and m ∈ N, there is subspace
FλRm of Rm satisfying

(1) Fλ′Rm ⊇ FλRm for any λ′ ≤ λ;

(2) FλRm =
⋂
λ′<λ Fλ

′
Rm;

(3) Fλ1Rm1
· Fλ2Rm2

⊆ Fλ1+λ2Rm1+m2
for any λ1, λ2 and m1,m2 ∈ N;

(4) FλRm = Rm for λ ≤ 0 and there exists C > 0 such that FCmRm = {0} for any m ∈ N.

Given a filtration F of R, let

am,i := inf{λ ∈ R≥0|codimFλRm ≥ i}
denote the jumping numbers of F . We call F an N-filtration if all am,i’s are nonnegative integers. Set

Tm(F) :=
am,dm
m

, Sm(F) :=
1

mdm

dm∑
i=1

am,i and Jm(F) := Tm(F)− Sm(F).

Put

T (F) := lim
m→∞

Tm(F), S(F) := lim
m→∞

Sm(F) and J(F) := lim
m→∞

Jm(F).

(The existence of these limits are proved in [3].) One should think of J(F) as certain norm of F . We
call F trivial at level m if Jm(F) = 0. Note that in the literature the more general R-filtrations and
Z-filtrations are investigated, but these can be easily reduced to our setting after an obvious translation
of the parameter λ.

Definition 1.2 ([12]). A test configuration (X ,L) for (X,L) with exponent r consists of the following
data:

(1) a flat proper morphism π from a variety X to C;
(2) a C∗-action on X lifting the canonical action on C;
(3) a C∗-equivariant (relatively) very ample line bundle L on X such that (X1,L1) ∼= (X, rL).

Definition 1.3. An N-filtration F of R is called finitely generated if the graded C[t]-algebra (also called
the Rees algebra) ⊕

m∈N

(⊕
λ∈Z

t−λFλRm
)

is finitely generated.

Given a finitely generated N-filtration F of R, we may find a sufficiently divisible integer r > 0 such
that ⊕

m∈N

(⊕
λ∈Z

t−λFλRmr
)

is generated in degree 1. Put

X := ProjC[t]
⊕
m∈N

(⊕
λ∈Z

t−λFλRmr
)

and L := OX (1).

Then (X ,L) gives rise to a test configuration of (X,L) with exponent r. Equivalently, (X ,L) can be
constructed explicitly as follows: Choose a basis {si}1≤i≤dr of Rr such that

si ∈ Far,iRr for each 1 ≤ i ≤ dr.
Then {si} together with the ‘weights’ {ar,i} (i.e., the jumping numbers of F on Rr) induces a 1-parameter
subgroup of GL(dr,C), which produces the flat family X inside Pdr−1 × C and L is the pullback of
OPdr−1×C(1).

Given any integer r > 0, a basis {si}1≤r≤dr of Rr and dr non-negative integers 0 ≤ λ1 ≤ ... ≤ λdr , one
can construct a finitely generated N-filtration F of R as follows: Put for λ ∈ R

FλRr := SpanC{si|λi ≥ λ};
then one can extend this filtration of Rr to a fintely generated N-filtration F of R using [4, Definition
3.18] (see also [26, §3.2]). A filtration thus obtained gives rive to a test configuration (X ,L) with exponent
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r, which clearly coincides with the one obtained by considering the 1-parameter subgroup of GL(dr,C)
induced by the {si} and the weights {λi}.

Conversely, any test configuration of (X,L) arises essentially in this way (see [22, Proposition 3.7]).
More precisely, given a test configuration (X ,L) of (X,L) with exponent r, then it is induced by a basis
{si}1≤i≤dr of Rr together with some weights {λi}1≤i≤dr . We may modify (this does not affect the stability
notions to be introduced) the C∗-action on (X ,L) by a constant weight to make mini{λi} = 0. So each
λi is a non-negative integer. Then the construction in the previous paragraph gives a finitely generated
N-filtration of R, which we will denote by F(X ,L). We also put

J(X ,L) := J(F(X ,L)).

This coincides with the JNA-funtional of test configurations in the literature.

Definition 1.4 ([5]). We call a test configuration (X ,L) almost trivial if J(X ,L) = 0. We call (X ,L)
trivial if it is a trivial product of (X,L) with C.

Geometrically, almost trivial means that, after normalization, (X ,L) is a trivial.

1.3. Chow stability and K-stability. Next we attach a new invariant to filtrations. As we shall see
this invariant has fruitful meanings when it comes to the stability notions of (X,L).

Definition 1.5. Let F be a filtration of R. For m ∈ N>0, we call

Chowm(F) := S(F)− Sm(F)

the Chow invariant of F at level m.

Definition 1.6. (Chow stability) We call the pair (X,L) Chow stable at level m if for any test configu-
ration (X ,L) with exponent m, one has

Chowm(F(X ,L)) ≥ 0,

and the equality holds only when (X ,L) is trivial.

In the view of [30, 26], this definition coincides with the classical one in the literature.
Next, we recall the notion of K-stability, which was defined using the generalized Futaki invariant. This

invariant first appeared in the work of Ding–Tian [10] and was later reformulated more algebraically by
Donaldson [12].

Definition 1.7. We call the pair (X,L) K-stable if any test configuration (X ,L) with certain exponent
r, the generalized Futaki invaraint

Fut(X ,L) := lim
m→∞

2mr · Chowmr(F(X ,L))

is always non-negative and it is zero only when (X ,L) is almost trivial. We call the pair (X,L) uniformly
K-stable if there exists ε > 0 such that

Fut(X ,L) ≥ εJ(X ,L)

for any test configuration (X ,L) of (X,L).

1.4. Main results.

Theorem 1.8. The pair (X,L) is Chow stable at level m if and only if there exists ε > 0 such that

Chowm(F) ≥ εJm(F)

for any filtration F of R.

Corollary 1.9. Assume that (X,L) has discrete automorphism group, and that there exists a cscK metric
in c1(L), then for any filtration F of R with J(F) > 0 it holds that

S(F) > Sm(F) for all m� 1.

Proof. By Donaldson [11], for any m � 1, (X,L) is Chow stable at level m. Note also that Jm(F) > 0
for m� 1. So the assertion follows from Theorem 1.8. �

Corollary 1.10. If (X,L) is Chow stable at level m then δm(L) > δ(L).
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Recall here that

δm(L) := inf
E

AX(E)

Sm(E)
and δm(L) := inf

E

AX(E)

S(E)
,

where E runs through all the prime divisors over X. Note that AX(E) is the log discrepancy of E and
each E induces a filtration of R so S(E) and Sm(E) have obviously meanings.

Proof. There exists a prime divisor E over X satisfying

δm(L) =
AX(E)

Sm(E)
.

One also has Jm(E) = Tm(E)−Sm(E) > 0 as |mL| is assumed to be base point free. Thus S(E) > Sm(E)
and hence

δm(L) >
AX(E)

S(E)
≥ δ(L).

�

The next result might look a bit surprising at first glance. It would be interesting if one can find a
purely algebraic proof of this.

Corollary 1.11. Let X be a K-stable Fano manifold, then for all sufficiently large and divisible m > 0
one has

δm(−KX) > δ(−KX).

Proof. By the Yau–Tian–Donaldson theorem [7, 28], there exists a Kähler–Einstein metric in c1(−KX).
Also note that X has discrete automorphism group. Then Donaldson’s work [11] implies that (X,−KX)
is Chow stable at sufficiently high levels. Choose a sufficiently divisible r > 0 such that the assumptions
in §1.1 holds for (X,−rKX). Then we can apply the previous corollary to conclude. �

2. The proof

This section is devoted to the proof of Theorem 1.8. To start with, we recall the following well-known
analytic characterization of Chow stability; see e.g., [19, 20, 21, 29] for several different proofs.

Theorem 2.1. The pair (X,L) is Chow stable at level m if and only if (X,mL) admits a balanced
embedding into Pdm−1.

We will not recall the definition of balanced embedding as it is not needed in what follows. But one
key point we shall recall is the following: As illustrated by Donaldson [13], the existence of balanced
embeddings can be detected by certain functionals defined on the m-th Bergman space, which we now
describe. Fix a positively curved smooth Hermitian metric h on L with ω := ddc log h > 0 as its curvature
form in c1(L). Put

Hω :=

{
φ ∈ C∞(X,R)

∣∣∣∣ωφ := ω + ddcφ > 0

}
.

Let

E(φ) :=
1

(n+ 1)V

n∑
i=0

∫
X

φωi ∧ ωn−1φ

denote the Monge–Amère energy for φ ∈ Hω, where V :=
∫
X
ωn. The m-th Bergman space Bm is a subset

in Hω, whic is defined as

Bm :=

{
φ =

1

m
log

dm∑
i=1

|si|2hm

∣∣∣∣{si} is a basis of Rm

}
.

Note that

Hm :=

∫
X

hm(·, ·)ωn

defines a Hermitian inner product on the vector space Rm. Then simple linear algebra shows that, for any
φ ∈ Bm, there exist an Hm-orthonormal basis {si}1≤i≤dm of Rm and a set of real numbers {λi}1≤i≤dm
such that

φ =
1

m
log

dm∑
i=1

eλi |si|2hm .
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We may thus define the quantized Monge–Ampère energy as

Em(φ) :=
1

mdm

dm∑
i=1

λi

and the quantized supremum as

Tm(φ) :=
max1≤i≤dm{λi}

m
.

for φ ∈ Bm. Then by [13], together with the uniqueness of balanced embeddings [25] and the variational
principle of [8], one has the following analytic criterion for the existence of balanced embeddings.

Theorem 2.2. (X,mL) admits a balanced embedding into Pdm−1 if and only if the funcitonal E−Em is
coercive on Bm, namely, there exist ε > 0 and C > 0 such that

E(φ)− Em(φ) ≥ ε(Tm(φ)− Em(φ))− C for all φ ∈ Bm.

In this case the balanced embedding corresponds to the (unique) critical point of E − Em in Bm.

Using the Bergman kernel asymptotic expansion, it is shown in [13] that

2m(E − Em)

will converge to the classical K-energy of Mabuchi as m→∞. For this reason we call

Km(φ) := 2m(E(φ)− Em(φ)) for φ ∈ Bm

the quantized K-energy at level m.
The following result is clear.

Corollary 2.3. The pair (X,L) is Chow stable at level m if and only if Km is coercive on Bm.

Next we explain how do filtrations of R relate to the above variational picture. Given a filtration F of
R, one can associate a ‘geodesic ray’ φFt to F using the construction in [23]. More precisely, choose an
Hm-orthonormal basis {si} of Rm such that

si ∈ Fam,iRm for all 1 ≤ i ≤ dm.

Namely {si} is an Hm-orthonormal basis that is compatible with F . Set for any t ≥ 0

φFm,t :=
1

m
log

dm∑
i=1

eam,it|si|2hm .

Then by definition,

Sm(F) =
Em(φFm,t)

t
and Tm(F) =

Tm(φFm,t)

t
for all t > 0.

Now for t ≥ 0 put

φFt := lim
m→∞

(
sup
k≥m

φFk,t

)∗
,

where ∗ denotes the upper semi-continuity regularization. By [31, (6.5)] one has

S(F) =
E(φFt )

t
for all t > 0.

As a consequence, we obtain that

(2.1) Chowm(F) = S(F)− Sm(F) =
E(φFt )− Em(φFm,t)

t
for all t > 0.

Lemma 2.4. For any N-filtration F of R, one has

Chowm(F) ≥ lim
t→∞

E(φFm,t)− Em(φFm,t)

t
.
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Proof. Denote by Fm the finitely generated N-filtration of R generated by the filtration F|Rm
of Rm (see

[4, Defnition 3.18]). So in particular,

Sm(F) = Sm(Fm) and φFm,t = φFm
m,t.

On the other hand, for any k ∈ N>0 one has

Smk(F) ≥ Smk(Fm)

So sending k →∞ we conclude that

S(F) ≥ S(Fm).

Now let (X ,L) be the test configuration of (X,L) induced by Fm and consider the associated geodesic ray

φFm
t . This geodesic ray coincides with the one obtained by Berman [1, Proposition 2.7] and the estimate

in loc. cit. shows that

|φFm
t − φFm

m,t| < C

for some uniform C > 0 (note that φFm
m,t is denoted by φFS in [1]). Therefore

S(F)− Sm(F) ≥ S(Fm)− Sm(Fm) = lim
t→∞

E(φFm
t )− Em(φFm

m,t)

t
= lim
t→∞

E(φFm,t)− Em(φFm,t)

t
,

as desired. �

Remark 2.5. It is clear from the above proof that the equality

(2.2) Chowm(F) = lim
t→∞

E(φFm,t)− Em(φFm,t)

t
.

holds when F = F(X ,L) is induced by a test configuration of (X,L) with exponent m. This is probably
well-known and is a quantized version of Chi Li’s result [16, Theorem 1.7.2].

We are now ready to prove our main result.

Proof of Theorem 1.8. The ‘if’ part follows immediately from the definition.
For the ‘only if’ part, we first treat the case where F is an N-filtration of R. By the previous lemma,

Chowm(F) ≥ lim
t→∞

E(φFm,t)− Em(φFm,t)

t
.

On the other hand, (X,L) being Chow stability at level m implies that, for some ε0 > 0 and C0 > 0,

E(φFm,t)− Em(φFm,t) ≥ ε0
(
Tm(φFm,t)− Em(φFm,t)

)
− C0.

Now using the fact that

Jm(F) =
Tm(φFm,t)− Em(φFm,t)

t
for any t > 0,

we arrive at

S(F)− Sm(F) ≥ ε0Jm(F)

for any N-filtration of R. Next we claim that the same estimate holds for all filtrations of R. To see this,
consider the quantity

U(F) :=
S(F)− Sm(F)

Jm(F)

for filtrations F of R with Jm(F) > 0 (when Jm(F) = 0 the desired estimate trivially holds). We wish to
show that

inf
F
U(F) ≥ ε0.

Obviously, U(F) is invariant under scaling and translation of F . So it sufficies to consider those F with
Jm(F) ≥ 1. Given such an F , let

0 ≤ am,1 ≤ ... ≤ am,dm
be its (possibly irrational) jumping numbers at level m. Using Dirichlet’s approximation theorem, for any
small ε > 0, we can find an integer p > 0 and (q1, ..., qdm) ∈ Ndm such that

|pam,i − qi| < ε for any 1 ≤ i ≤ dm.
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We now scale F by factor q and then translate it by constant ε. By abuse of notation we still denote
the resulting filtration by F (note that U(F) is unchanged). The jumping numbers of F at level m then
becomes λi := pam,i + ε and Jm(F) ≥ p ≥ 1. Note also that

qi < λi < qi + 2ε for any 1 ≤ i ≤ dm.

Now consider the N-filtration FN induced by F , which is given by (see also [3, §2.7])

FλNRk := FdλeRk for λ ∈ R and k ∈ N.

Then the jumping numbers of FN at level m are q1, ..., qdm . So one easily sees that

S(F) = S(FN), Sm(F)− 2ε < Sm(FN) < Sm(F),

and

Jm(FN) > Jm(F)− 2ε ≥ 1− 2ε.

Therefore,

U(F) ≥ S(FN)− Sm(FN)− 2ε

Jm(FN) + 2ε
≥ 1

1 + 2ε
1−2ε

·
(
U(FN)− 2ε

1− 2ε

)
≥ 1

1 + 2ε
1−2ε

·
(
ε0 −

2ε

1− 2ε

)
.

Now sending ε→ 0 we complete the proof.
�

Using the above argument, for any filtration F of R, after scaling and translation, the Bergman geodesic
ray φFm,t can be approximated by a Bergman geodesic ray induced from an N-filtration as close as we want.
As a consequence, we can strengthen Lemma 2.4 as follows:

Lemma 2.6. For any filtration F of R, one has

Chowm(F) ≥ lim
t→∞

E(φFm,t)− Em(φFm,t)

t
.

Corollary 2.7. For any filrtation F of R with Jm(F) > 0, one has

S(F)− Sm(F)

Jm(F)
≥ lim
t→∞

E(φFm,t)− Em(φFm,t)

Tm(φFm,t)− Em(φFm,t)
.

Proof. We conclude using the identity Tm(φFm,t)− Em(φFm,t) = Jm(F)t. �

3. Further discussions

In this part we make some general discussions and propose several questions/conjectures for future
research.

3.1. Limiting behavior. For any filtration F of R, it is an interesting question to see if the limit

lim
m→∞

2m · Chowm(F) = lim
m→∞

2m(S(F)− Sm(F))

exists or not. The answer seems to be negative as it turns out to be related to the problem of counting
lattice points in certain filtrated Okounkov body (a problem of this sort is already rather non-trivial even
for rational polytopes; see e.g. [18]). When F is a finitely generated N-filtration of R, the following result
is easy to show.

Lemma 3.1. When F is a finitely generated N-filtration of R, the limit

lim
m→∞

2m(S(F)− Sm(F))

can possibly take finitely many different values, depending on the divisibility of m as it goes to infinity.
While for any sufficiently divisible r ∈ N>0, one has

Fut(X ,L) = lim
m→∞

2mr(S(F)− Smr(F)),

where (X ,L) is some test configuration of (X,L) induced by F .
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Proof. Since F is finitely generated, it implies that the bi-graded ring⊕
m∈N

(⊕
λ∈N
FλRm

)
is finitely generated over C. It then follows from the theory of Hilbert functions that∑

λ∈N
dimFλRm = Q(m)

for some quasi-polynomial Q whenever m is large enough. This means that Q is a polynomial in m, whose
coefficients depend on m periodically. On the other hand, by Riemann–Roch we also have for m� 1

dm = P (m)

for some polynomial of degree n. As F is assumed to be linearly bounded, Q has degree at most n + 1.
So we can write

Q(m) = bn+1(m)mn+1 + bm(m)mn + ...+ b0(m),

where each bi : N→ Q is a periodic function. Now using the fact

Sm(F) =
Q(m)− dm

mdm
=
Q(m)− P (m)

mP (m)
,

we see that the leading coefficient bn+1 of Q is a constant depending on S(F) and vol(L). However
starting from the second leading coefficient, each bi(m) can possibly take finitely many different values.
It then follows that the limit limm→∞ 2m(S(F) − Sm(F)) can only take finitely many different values,
depending on the divisibility of m.

But for any sufficiently divisible r ∈ N>0, the bi-graded ring⊕
m∈N

(⊕
λ∈N
FλRmr

)
is generated in degree 1. Then the Hilbert function Q(mr) becomes a polynomial in m whenever m is
sufficiently large. In this case one easily sees that limm→∞ 2mr(S(F)−Smr(F)) exists and coincides with
the generalized Futaki invariant of any test configuration associated to F . �

Corollary 3.2. Let F be a finitely generated N-filtration of R. Then for any sufficiently divisible r ∈ N>0,
one has

lim
t→∞

K(φFt )

t
≤ lim
m→∞

(
lim
t→∞

Kmr(φ
F
mr,t))

t

)
,

where

K(φ) :=
1

V
log

∫
X

ωnφ
ωn

ωnφ + n
(−KX) · Ln−1

Ln
E(φ)− 1

V

∫
X

φRic(ω) ∧
n−1∑
i=0

ωi ∧ ωn−1−iφ

denotes the K-energy and Km := 2m(E − Em) is the quantized K-energy. The equal holds if the test
configuration induced by F has reduced central fiber.

Proof. Fix r0 ∈ N>0 such that for any multiple r of r0, the C[t]-algebra⊕
m∈N

(⊕
λ∈Z

t−λFλRmr
)

is generated in degree 1. Then as explained in Remark 2.5, one has

2mr(S(F)− Smr(F)) = lim
t→∞

Kmr(φ
F
mr,t))

t
for all m ∈ N>0.

Let (X ,L) be the test configuration induced by F with exponent r0. Applying the previous lemma, for
any r divisible by r0, we deduce that

Fut(X ,L) = lim
m→∞

(
lim
t→∞

Kmr(φ
F
mr,t))

t

)
.

On the other hand, by Li [16, Theorem 1.7.2], one has

lim
t→∞

K(φFt )

t
≤ Fut(X ,L),

and the equality holds if the central fiber X0 is reduced. Thus we get the assertion. �
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When F is a finitely generated N-filtration, it follows from Lemma 3.1 that

(3.1) Fut(X ,L) ≥ lim inf
m→∞

2m(S(F)− Sm(F)),

where (X ,L) is the test configuration of (X,L) induced by F . A bit more careful analysis can probably
show that the above inequality is actually an equality when the central fiber X0 is reduced (this is possibly
not hard to show but at the moment it is not clear to the author).

For a general filtration F of R, Lemma 2.6 implies that

(3.2) lim inf
m→∞

2m(S(F)− Sm(F)) ≥ lim inf
m→∞

(
lim
t→∞

2m
(
E(φFm,t)− Em(φFm,t)

)
t

)
.

Note that the right hand side is also investigated in [26], which is denoted by Chow∞(F) in loc. cit.

Conjecture 3.3. One has

(1) lim infm→∞ 2m(S(F)− Sm(F)) is equal to the non-Archimedean Mabuchi energy in [5, §7.3];

(2) lim infm→∞

(
limt→∞

2m
(
E(φFm,t)−Em(φFm,t)

)
t

)
is equal to the slope at infinity of K along φFt .

If this conjecture holds then combining (3.2) with [16, Theorem 1.7.1] one can deduce that [16, Con-
jecture 1.6] holds for those maximal geodesic rays induced by filtrations. Probably this conjecture is too
good to be true, but at least it is promising for those filtrations that are induced by models of (X,L) (in
the sense of [16]), in which case we actually expect that lim infm→∞ 2m(S(F) − Sm(F)) is given by the
intersection formula in [17, Theorem 1.1].

Remark 3.4. Given a filtration F of R, a natural idea is to approximate F by a sequence of finitely
generated filtrations (as in [26]). Then to derive useful information, one key point is to show that the
Hilbert function associated to these filtrations stay in a “bounded family”. This seems to be related to
the Fujita approximation conjecture of Li [17].

3.2. Some new stability thresholds. The following estimate is building on [2, Lemma 7.7] and [24,
Lemma 5.2].

Proposition 3.5. There exists C0 > 0 such that for any filtration F of R with J(F) > 0, one has

lim inf
m→∞

2m(S(F)− Sm(F))

Jm(F)
> −C0.

Proof. Given any m � 1, we consider the Bergman geodesic ray φFm,t. By definition, there exists an
Hm-orthonormal basis {si}1≤i≤dm of Rm such that

φFm,t =
1

m
log

dm∑
i=1

eam,it|si|2hm ,

where am,i’s are the jumping numbers of F . Then using the convexity of E along Bergman geodesics, one
has for any t > 0

E(φFm,t)− E(φFm,0)

t
≥ d

dt

∣∣∣∣
t=0

E(φFm,t) =
1

mV

∫
X

∑dm
i=1 am,i|si|2hm∑dm
i=1 |si|2hm

ωnφFm,0

=
1

mV

∫
X

∑dm
i=1(am,i − am,dm)|si|2hm∑dm

i=1 |si|2hm

ωnφFm,0
+
am,dm
m

.

Observe that φFm,0 = 1
m log

∑dm
i=1 |si|2hm . So by the standard Bergman kernel expansion, one can find

C0 > 0 (independent of F) such that

dmω
n
φFm,0

V ·
∑dm
i=1 |si|2hm

≤ (1 +
C0

m
)ωn
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whenever m is sufficiently large. This implies that

E(φFm,t)− E(φFm,0)

t
≥ 1 + C0/m

mdm

∫
X

dm∑
i=1

(am,i − am,dm)|si|2hmωn +
am,dm
m

=
1 + C0/m

mdm

dm∑
i=1

am,i −
C0

m
· am,dm

m

=
1 + C0/m

t
Em(φFm,t)−

C0

m
·
Tm(φFm,t)

t
.

Rearranging, we obtain that

E(φFm,t)− Em(φFm,t)

Tm(φFm,t)− Em(φFm,t)
≥ −C0

m
+

E(φFm,0)

Tm(φFm,t)− Em(φFm,t)
for any t > 0.

Now letting t→∞, we arrive at

lim
t→∞

E(φFm,t)− Em(φFm,t)

Tm(φFm,t)− Em(φFm,t)
≥ −C0

m
,

which holds for all m� 1. Then using Corollary 2.7, we conclude. �

Therefore, for those F with J(F) > 0, it makes sense to consider the following quantity:

γ(F) := lim inf
m→∞

2m(S(F)− Sm(F))

J(F)
.

Put

(3.3) γ(L) := inf
F
γ(F),

where F runs through all the filtrations with J(F) > 0. Note that by Proposition 3.5,

γ(L) > −∞.
Similarly one can define a quantized version of γ by putting

γm(L) := inf
F

2m(S(F)− Sm(F))

Jm(F)
.

where F satisfies Jm(F) > 0. By the proof of Theorem 1.8, in the above inf, it is enough to only consider
N-filtrations.

The following result is clear.

Proposition 3.6. One has

(1) (X,L) is Chow stable at level m if and only if γm(L) > 0;
(2) (X,L) is K-stable if and only if γ(F) > 0 for any finitely generated N-filtration F with J(F) > 0;
(3) (X,L) is uniformly K-stable if γ(L) > 0;
(4) (X,L) is uniformly K-stable if lim inf γm(L) > 0.

When F = Fv is induced by some valuation v ∈ ValX , one has (cf. [6])

S(Fv)
n

≤ J(Fv) ≤ nS(Fv).

For this reason one can also consider

η(v) := lim inf
m→∞

2m(S(Fv)− Sm(Fv))
S(Fv)

.

Remark 3.7. When X is Fano and L = −KX , then for any dreamy divisor E over X, one has (cf. [15])

η(ordE) =
AX(E)

S(E)
− 1.

In this case the liminf in the definition of η is actually a limit, since one has an explicit asymptotic
expansion of Sm using K. Fujita’s asymptotic Riemann-Roch [14, Proposition 4.1]. See also [9] for the
case of general polarizations.

We end this note by asking the following

Question 3.1. Under what conditions is the inf in (3.3) computed by some finitely generated N-filtration?
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