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Abstract In this note, we discuss the relation between the greatest Ricci

lower bound and δ-invariant on Fano manifolds.

1. Motivation

Throughout this note, X will be an n-dimensional Fano manifold. An inter-

esting problem in Kähler geometry is to find a canonical metric on X. Over the

past a few decades, various energy functionals and invariants have been introduced

to tackle this problem. We refer the reader to the recent survey [16] for a nice

introduction. In this note, we will be mainly interested in two invariants defined

on X. One is known as the greatest Ricci lower bound, and the other is known as

the δ-invariant (also referred to as the K-stability threshold). The purpose of this

note is to study the relation between them.

2. Background

We recall the following definitions.

Definition 1.1 ( [17,20]). We define the greatest Ricci lower bound R(X) to be

R(X) := sup{λ > 0 | ∃ ω ∈ 2πc1(X) such that Ric(ω) > λω }.

Definition 1.2 ( [2, 14]). Let L be an ample Q-line bundle on X. For any suffi-

ciently large and divisible integer k, we consider a basis s1, · · · sdk of H0(X, kL),
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where dk = h0(X, kL). We can associate a Q-divisor D ∼Q L to this basis by

D :=
1

kdk

dk∑
i=1

{si = 0}.

Any D obtained in this way is called a k-basis type divisor of L. We put

δk(L) := sup{c > 0 | (X, cD) is log canonical for any k-basis type divisor D of L}.

Then we define δ(L) by

δ(L) := lim sup
k

δk(L).

If L = −KX , then we simply write

δ(X) := δ(−KX),

which is called the δ-invariant of X.

Remark 1. The thresholds R(X) and δ(X) are also closely related to the alpha

invariant α(X) introduced by Tian [19]. For instance, we have

R(X) > min

{
n+ 1

n
α(X), 1

}
,

which can be derived using the continuity method; see [19]. Moreover, we have

(see [2, Theorem A] for a more general result)

n+ 1

n
α(X) 6 δ(X) 6 (n+ 1)α(X).

It turns out that R(X) and δ(X) are quite useful to test K-(semi)stability of

X (for the definition of K-(semi)stability, we refer the reader to [1]). In particular,

we recall the following result.

Theorem 2 ( [2, 10,14]). The following are equivalent.

1. X is K-semistable;

2. R(X) = 1;

3. δ(X) > 1.
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3. Main result

Roughly speaking, R(X) measures how far X is from being a Kähler-Einstein

(KE) manifold. So it is always an interesting problem to find the value of R(X)

since it plays an important role in the study of KE problems. We refer the reader

to [9, 11, 17, 18, 20] for more details in this direction. The main result of this note

is the following result.

Theorem 3 ( [5]). Let X be a Fano manifold. Then we have

R(X) = min{δ(X), 1}.

This result was proved in the toric case by Blum-Jonsson [2, Corollary 7.19].

So it is reasonable to believe that the same result holds in the general setting. The

purpose of this note is to give a short proof of Theorem 3 relying on some recent

developments in the literature.

4. The proof

To prove Theorem 3, one needs to use Kähler-Einstein edge (KEE) metric and

its corresponding thresholds as well. So we recall the following two definitions.

Definition 1.3 ( [10]). Suppose that ∆ ∈ | −mKX | is a smooth divisor, where m

is a positive integer. We define

R(X,∆/m) := sup{λ > 0 | ∃ KEE metric ω ∈ 2πc1(X) s.t. Ric(ω) = λω+2π(1−λ)[∆]/m }

Definition 1.4 ( [7]). Suppose that ∆ ∈ |−mKX | is a smooth divisor, where m is a

positive integer. Let λ ∈ (0, 1] be a rational number. Then −KX− 1−λ
m ∆ ∼Q −λKX

is an ample Q-line bundle. We define

δk(X,
1− λ
m

∆) := sup

c > 0

∣∣∣∣∣the log pair

(
X,

1− λ
m

∆ + cD

)
is log canonical

for any k-basis type divisor D of − λKX

 .

Moreover, we define

δ(X,
1− λ
m

∆) := lim sup
k

δk(X,
1− λ
m

∆),

which is called the δ-invariant of the log Fano pair (X, 1−λm ∆).
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Remark 4. For more information about KE and KEE metrics, we refer to [15].

Remark 5. By Bertini’s theorem, for m� 1, any general divisor ∆ ∈ | −mKX |
is smooth.

Remark 6. R(X) and R(X,∆/m) can be related as follows:

R(X)
m− 1

m−R(X)
6 R(X,∆/m) 6 R(X). (1.5)

See [18] for a proof (see also [10]). In particular, limR(X,∆/m) = R(X).

Remark 7. The thresholds R(X,∆/m) and δ(X, 1−λm ∆) are the counterparts of

R(X) and δ(X) in the log setting. They can be used to test the existence of KEE

metrics and log K-(semi)stability (see e.g. [7, 8]).

Remark 8. If follows immediately from the definition that

δ(−λKX) > δ(X,
1− λ
m

∆). (1.6)

With a little more effort, one can actually prove the following

Lemma 9. Fix a rational number λ ∈ (0, 1]. For each m� 1 pick a smooth divisor

∆ ∈ | −mKX | and put Bm := 1−λ
m ∆. Then we have

lim
m→∞

δ(X,Bm) = δ(−λKX).

Proof. Fix any small ε > 0. If suffices to show that, for any m� 1 and sufficiently

divisible k � 1, we have

δk(−λKX) > δk(X,Bm) > (1− ε)δk(−λKX).

The first inequality δk(−λKX) > δk(X,Bm) follows clearly from Definition 1.2 and

Definition 1.4. So it remains to prove the second inequality. For this purpose, we

let D be any k-basis type divisor of −λKX . Pick any c > 0 such that the log pair

(X, cD) is log canonical. If then suffices to show that the log pair (X,Bm+(1−ε)cD)

is log canonical as well.

Now notice that, the log pair (X,∆) is log canonical since ∆ ∈ | −mKX | is a

smooth divisor. Then we can apply a trick from [4] to show the log canonicity of

(X,Bm + (1− ε)cD). Indeed, suppose that the log pair (X,Bm + (1− ε)cD) is not

log canonical, then [4, Remark 2.1] implies that the log pair (X, (1−ε)c
1−(1−λ)/mD) is

not log canonical as well. If we pick m > 1−λ
ε , the log pair (X, cD) is then not log

canonical, contradicting our choice of c.
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Now we are ready to prove Theorem 3.

Proof of Theorem 3. Using Theorem 2, it is enough to assume that X is not K-

semistable. So R(X) ∈ (0, 1). Our goal is to show that δ(X) = R(X). For

simplicity we may also assume that R(X) ∈ Q. Then we consider the ample Q-line

bundle −R(X)KX . By Definition 1.2, it suffices to show that

δ(−R(X)KX) = 1.

First, we show that δ(−R(X)KX) > 1. For this purpose, we pick any rational

number λ ∈ (0, R(X)). Then let m be a sufficiently large integer and pick a smooth

divisor ∆ ∈ | −mKX |. By (1.5), we may assume that

λ < R(X,∆/m).

Then by Definition 1.3 and [8, Theorem 1.1], we can find a KEE metric ω ∈ 2πc1(X)

such that

Ric(ω) = λω + 2π(1− λ)[∆]/m.

So the log pair (X, λ−1m ∆) is log K-semistable (see [8, Corollary 1.12]). Thus by [7,

Corollary 4.8], we have

δ(X,
λ− 1

m
∆) > 1.

Hence by (1.6), we have δ(−λKX) > 1. Letting λ→ R(X), we get

δ(−R(X)KX) > 1.

So it remains to show that δ(−R(X)KX) 6 1. We argue by contradiction.

Suppose that δ(−R(X)KX) > 1. Then we may pick a sufficiently small rational

number ε > 0 such that R(X) + ε 6 1 (recall that R(X) < 1) and

δ
(
− (R(X) + ε)KX

)
> 1.

Then Lemma 9 implies that, for any m� 1 and any smooth divisor ∆ ∈ |−mKX |,
we have

δ(X,
1− (R(X) + ε)

m
∆) > 1.

Then by [3, Corollary 2.11], the log pair
(
X, 1−(R(X)+ε)

m ∆
)

is uniformly log K-stable.

So it follows from [6, 21] (see also [22]) that, there exists a KEE metric associated

to this pair. Thus we have R(X,∆/m) > R(X) + ε, contradicting (1.5).
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Remark 10. In the above argument, to prove δ(−R(X)KX) 6 1, one can also

argue as follows. Suppose that δ(−R(X)KX) > 1. Then we may pick a sufficiently

small rational number ε > 0 such that R(X) + ε 6 1 and δ
(
− (R(X) + ε)KX

)
> 1.

Then it follows from [3, Corollary 2.11] that, the polarized pair
(
X,−(R(X) +

ε)KX

)
is K-semistable in the adjoint sense, hence twisted K-semistable in the sense

of [13] (see [1, Proposition 8.2]). So [12, Proposition 10] guarantees that, for some

λ ∈ (R(X), R(X) + ε), we can find two Kähler forms ω,α ∈ 2πc1(X) such that

Ric(ω) = λω + (1− λ)α,

which also gives us a contradiction.
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