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Abstract We show that Fujita–Odaka’s δ-invariant coincides with the op-

timal exponent of certain Moser–Trudinger type inequalities on projective

manifolds. As a consequence we give an alternative proof of the uniform

Yau–Tian–Donaldson conjecture for the existence of twisted Kähler–Einstein

metrics.

1. Motivation

A central problem in Kähler geometry is to find canonical metrics on a given

compact Kähler manifold. One important class of canonical metrics is the Kähler-

Einstein (KE) metric. A Kähler metric is KE if the Ricci form of the Kähler

metric is a constant multiple of the Kähler form. As we know, the Ricci form of

a Kähler metric must lie in the first Chern class of the manifold. Therefore, a

necessary condition for the existence of KE metric is that the first Chern class of

the manifold has a sign.

The study of KE metrics has a long history. In the cases where the first Chern

class is zero or negative, the uniqueness of the KE metric was proved by Calabi

in the 1950s, and the existence of such a metric was obtained in 1978 by Yau [30]

(see also Aubin [1]). However, when the first Chern class is positive (i.e., for Fano

manifolds), the situation is much more complicated. It turns out that there are ob-

structions to the existence of KE metrics on Fano manifolds. The first obstruction

was found by Matsushima [22] in 1957, which says that the automorphism group of
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a KE Fano manifold must be reductive. In 1983 another obstruction was found by

Futaki in [19], where he defined an holomorphic invariant (which we now call Fu-

taki invariant) and it was shown that the Futaki invariant must vanish if the Fano

manifold admits a KE metric. In 1985, Bando-Mabuchi [2] showed that, if any, the

KE metric on a Fano manifold is unique up to biholomorphic automorphisms.

So it is natural to ask, when does a Fano manifold admit a KE metric? Regard-

ing this problem, many significant results were obtained in history. For instance,

in 1990, Tian [26] completely solved the existence problem for Fano surfaces and

showed that the existence of KE metrics is equivalent to the reductivity of the

automorphism groups of Fano surfaces; in 2004, Xujia Wang and Xiaohua Zhu [29]

showed that there always exist Kähler-Ricci solitons on toric Fano manifolds and

the soliton metric is KE if and only if the Futaki invaraint vanishes.

For general Fano manifolds, the existence of KE metrics is more difficult to

characterize. In 1992, Ding-Tian [14] defined a generalized Futaki invariant for

a deformation family of Fano manifolds, and based on this, in 1997, Tian [27]

introduced an algebro-geometric notion called K-stability. This notion was later

reformulated by Donaldson [15] using more algebraic language. And the famous

Yau–Tian–Donaldson conjecture says that, the existence of KE metrics on Fano

manifolds is equivalent to K-stability. This conjecture was recently solved by Tian

[28] and Chen-Donaldson-Sun [9] independently in 2012.

More generally, given a polarized Kähler manifold (X,L), one can try to find

twisted Kähler–Einstein (tKE) metrics, which will be the main focus of this paper.

More precisely, a Kähler form ω ∈ c1(L) is called tKE if it satisfies

Ric(ω) = ω + θ

for some smooth form θ ∈ c1(X)− c1(L). So in particular this equation generalizes

the KE equation on Fano manifolds. One would expect that such a equation

is probably more difficult to solve than the one in the Fano case and a natural

question would be: what is the right notion of stability that governs the solvability

of this equation? This paper aims to give an answer to this question.

2. Main Results

Before stating our main results, we need to recall two invariants that will play

prominent roles in this paper. One is the algebraic δ-invariant that is related to
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the notion of Ding stability, and another is the analytic δ-invariant, which governs

the coercivity of Ding functionals.

We first recall the definition of algebraic δ-invariant, which was first introduced

by Fujita–Odaka [17] using basis type divisors, and then reformulated by Blum–

Jonsson [5] in a more valuative fashion as follows:

δ(L) := inf
E

AX(E)

SL(E)
.

Here E runs through all the prime divisors over X, i.e., E is a divisor contained

in some birational model Y
π−→ X over X. Moreover,

AX(E) := 1 + ordE(KY − π∗KX)

denotes the log discrepancy, and

S(E) := SL(E) :=
1

vol(L)

∫ ∞
0

vol(π∗L− xE)dx

denotes the expected vanishing order of L along E.

Historically, the case of the most interest is when L = −KX and θ = 0, i.e., the

Fano case. Regarding the existence of Kähler–Einstein metrics on such manifolds,

the notion K-stability was introduced by Tian [27] and later reformulated more

algebraically by Donaldson [15]. This stability notion has recently been further

polished by Fujita and Li’s valuative criterion [18, 21], and we now know (see [5,

Theorem B]) that δ(−KX) > 1 is equivalent to (X,−KX) being uniformly K-stable,

a condition stronger than K-stability (but actually these two are equivalent, at least

in the smooth setting). It is also known that uniform K-stability is equivalent to

the uniform Ding stability of Berman [3]. More recently Boucksom–Jonsson [5]

further extend the definition of uniform Ding stability to general polarizations

using δ-invariants, which we will adopt in this article.

Definition 1. We say (X,L) is uniformly Ding stable if δ(L) > 1.

Under the YTD framework, it is expected that such a notion would imply

the existence of tKE metrics. In the literature, the most examined case is when

= −KX , namely, the Fano setting. By using continuity methods (cf. [9,28]) or the

variational approach (cf. [6]), we now know that one can indeed find a KE metric

ω ∈ c1(X) solving

Ric(ω) = ω
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whenever δ(−KX) > 1.

However, to the author’s knowledge, all the known approaches to the above

statement does not work well for general polarization L, one main difficulty being

that there is no convexity available for twisted K-energy in the non-Fano setting. In

what follows we will present a quantization approach to circumvent this difficulty,

which allows us to work even without the Fano condition.

More precisely, given any (not necessarily semi-positive) smooth representative

θ ∈ c1(X)− c1(L), we want to investigate the following tKE equation:

Ric(ωtKE) = ωtKE + θ. (1.1)

To study this, a crucial input is taken from the work of Ding [13], who essentially

showed that the solvability of the above equation is governed by certain Moser–

Trudinger type inequality. Inspired by this viewpoint, the author introduced an

analytic δ-invariant in [31], which we now turn to describe.

Given any compact Kähler manifold (X,ω), put

H(X,ω) :=
{
φ ∈ C∞(X,R)

∣∣ωφ := ω + ddcφ > 0
}
.

Let E : H(X,ω)→ R denote the Monge–Ampère energy defined by

E(φ) :=
1

(n+ 1)V

n∑
i=0

∫
X

φωn−i ∧ ωiφ for φ ∈ H(X,ω).

The analytic δ-invariant of (X,ω) is then defined by

δA([ω]) := sup

{
λ > 0

∣∣∣∣∃Cλ > 0 s.t.

∫
X

e−λ(φ−E(φ))ωn < Cλ for any φ ∈ H(X,ω)

}
,

(1.2)

which does not depend on the choice of ω. As we will see, δA(L) > 1 is equivalent

the coercivity of certain twisted Ding functional whose critical point gives rise to

the desired tKE metric solving (1.1). When ω ∈ c1(L) for some ample line bundle

L, we also put

δ(L) := δ([ω]).

Our first main result can be stated as follows.

Theorem 2 ( [32]). For any ample line bundle L, one has

δ(L) = δA(L).
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In particular uniform Ding stability implies the coercivity of twisted Ding func-

tionals and as a consequence, we solve (1.1).

Theorem 3 ( [32]). Assume that (X,L) is uniformly Ding stable. Then for any

smooth form θ ∈ c1(X)− c1(L), there exists a Kähler form ωtKE ∈ c1(L) solving

Ric(ωtKE) = ωtKE + θ.

The proof of Theorem 2 uses the quantization approach initiated in [23], which

not only strengthens the work of Berman–Boucksom–Jonsson [6] but also simplifies

their argument substantially.

3. Basis divisors and quantization

3.1 Basis divisors

Let (X,L) be a polarized pair, where X is an n-dimensional projective manifold

and L is an ample line bundle on X. Recently, Fujita-Odaka [17] introduced an

δ-invariant in the study of K-stability of Fano varieties. We begin with a general

definition.

Definition 4. For any m > 1, we set

dm := dimCH
0(X,mL) > 0.

For any basis s1, ..., sdm of H0(X,mL), let Di be the divisor cut out by si and we

consider the Q-divisor

D =
1

mdm

dm∑
i=0

Di,

which we call a m-basis divisor of L. We set

δm(L) := sup{c > 0| (X, cD) is lc for any m-basis divisor D of L}.

And we define the delta invariant by

δ(L) := lim sup
m→∞

δm(X,L).

We remark that the above limsup is actually a limit (see [5, Theorem A]) and

this definition coincides with 4. To be more precise, let π : Y → X be a proper
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birational morphism and let F ⊂ Y be a prime divisor F in Y . We say that F is

a divisor over X. Let

Sm(F ) :=
1

mdm

∞∑
j=1

dimH0(Y,mπ?L− jF )

denote the expected vanishing order of L along F at level m. (the sum, of course,

only runs up to a certain finite j that will be defined shortly). Also note that one

has

Sm(F ) = sup
{

ordF (D) : m-basis divisor D of L
}
,

and this supremum is attained by any m-basis divisor D arising from a basis {si}
that is compatible with the filtration

{H0(Y,mπ?L−jF )}τm(π?L,F )
j=0 , where τm(π?L,F ) := max{x ∈ N : H0(Y,mπ?L−xF ) 6= 0},

(1.3)

i.e., each H0(Y,mπ?L− jF ) is spanned by a subset of the {si}dmi=1 [17, Lemma 2.2]

(see [7, Lemma 2.7] for an exposition). Here ordF (D) is the vanishing order of π?D

along F . Then by [17],

δm(L) = inf
F overX

AX(F )

Sm(F )
. (1.4)

A well-known fact is that this infimum is attained by some F . The above equality

actually follows from the following standard fact: for any effective R-divisor D ⊂ X,

its log canonical threshold is defined by

lct(X,D) := inf
F

AX(F )

ordF (D)
. (1.5)

Now the key point is that as m→∞, one has

Sm(F )→ S(F )

and one actually can find εm → 0 such that (see [5])

Sm(F ) 6 (1 + εm)S(F ) for any F.

These properties easily imply that

δ(L) = lim
m→∞

inf
F

AX(F )

Sm(F )
= inf

F
lim
m→∞

AX(F )

Sm(F )
= inf

F

AX(F )

S(F )
.
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3.2 Quantized analytic δ-invariant

Let (X,L) be a polarized Kähler manifold. Let Pm denote the space of all

Hermitian inner products on the complex vector space H0(X,mL). As observed

by Donaldson [16] a fundamental Bott–Chern type functional on Pm × Pm is

Em(H,K) :=
1

mdm
log detK−1H. (1.6)

In practice it is convenient to fix some H in the first slot and, in the second slot,

to pull-back via the isomorphism FS : Pm → Bm,

FS(K) :=
1

m
log

dm∑
i=1

|σi|2hm ,

where {σi} is an(y) orthonormal basis of K, and where Bm denotes the image of

Pm via FS, also called the m-th Bergman space,

Bm :=

{
ϕ =

1

m
log

dm∑
i=1

|σi|2hm : {σi}dmi=1 is a basis of H0(X,mL)

}
.

This yields a functional Em
(
H,FS−1( · )

)
, that we also denote by

Em(H,ϕ) := Em(H,FS−1(ϕ)) = Em(H,K), for ϕ = FS(K) ∈ Bm.

As shown by Donaldson Em is the natural quantization of E [16, §3]. More precisely,

for any φ ∈ H(X,ω), put

Hφ
m :=

∫
X

(he−φ)m(·.·)ωn.

We denote by φ(m) ∈ Bm the Bergman projection. It is given by

φ(m) :=
1

m
log

dm∑
i=1

|si|2hm ,

where {si} is an Hφ
m-orthonormal basis of H0(X,mL). Then one has

lim
m→

Em(H0
m, φ

(m)) = E(φ).

Definition 5 ( [23]). Let L be an ample line bundle. The m-th analytic δ-invariant

is defined by

δAm(L) := sup

{
δ > 0 : sup

ϕ∈Bm

∫
X

e−δ(ϕ−Em(H,ϕ))ωn <∞
}
.
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One should think of δAm(L) as the optimal constant in a quantized Moser–

Trudinger inequality. Note that this definition depends neither on the choice of

H (due to the cocyclic nature of Em, i.e., Em(H,K) + Em(K,N) = Em(H,N)),

nor on the choice of h (and hence of ω). In practice we shall often use

Hm := H0
m =

∫
X

hm(·, ·)ωn

as a reference in Pm, in which case we will write

Em(ϕ) := Em(Hm, ϕ) for ϕ ∈ Bm.

3.3 Comparing E with Em

Given any φ ∈ H(X,ω), it has been known since the work of Donaldson that

E(φ) = limm→∞Em(φ(m)). But this convergence is not uniform when φ varies

in H(X,ω), which is the main stumbling block in the quantization approach. To

overcome this, we recall a quantized maximum principle due to Berndtsson [4].

The setup goes as follows. For any ample line bundle E overX, let g be a smooth

positively curved metric on E with η := −ddc log g > 0 being its curvature form.

Pick two elements φ0, φ1 ∈ H(X, η). It was shown by Chen [8] and more recently

by Chu–Tosatti–Weinkove [10] that there always exists a C1,1-geodesic φt joining

φ0 and φ1. For the reader’s convenience, we briefly recall the definition. Let [0, 1] 3
t 7→ φt be a family of functions on [0, 1]×X with C1,1 regularity up to the boundary.

Let S := {0 < Re s < 1} ⊂ C be the unit strip and let π : S × X → X denote

the projection to the second component. Then we say φt is a C1,1-subgeodesic if

it satisfies π∗η + ddcS×XφRe s > 0. We say it is a C1,1-geodesic if it further satisfies

the homogenous Monge–Ampère equation:
(
π∗η + ddcS×XφRe s

)n+1
= 0.

Now given any C1,1 subgeodesic joining φ0 and φ1, one may consider

Hilbφt :=

∫
X

g(·, ·)e−φt ,

which is a family of Hermitian inner products on H0(X,E + KX) joining Hilbφ0

and Hilbφ1 . Note that we do not need any volume form in the above integral.

Then Berndtsson’s quantized maximum principle says the following, which in fact

holds for subgeodesics with much less regularity; see [11, Proposition 2.12].

Proposition 6. [4, Proposition 3.1] Let [0, 1] 3 t 7→ Ht be the Bergman geodesic

connecting Hilbφ0 and Hilbφ1 . Then one has

Ht 6 Hilbφt for t ∈ [0, 1].
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We will now apply this result to the setting where E := mL − KX and g :=

hm ⊗ ωn. As a consequence, we obtain the following key estimate, which can be

viewed as a weak version of the “partial C0 estimate”.

Proposition 7 ( [32]). For any ε ∈ (0, 1), there exist m0 = m0(X,L, ω, ε) ∈ N
such that

E(φ) 6 Em
(
((1− ε)φ)(m)

)
+ ε supφ

for any m > m0 and any φ ∈ H(X,ω).

Proof. Since the statement is translation invariant, we assume that supφ = 0. Let

[0, 1] 3 t 7→ φt be a C1,1 geodesic connecting 0 and φ, with φ0 = 0 and φ1 = φ.

The geodesic condition implies that φt is convex in t so we have

φ̇0 :=
d

dt

∣∣∣∣
t=0

φt 6 0

as φ 6 0. Put φ̃t := (1 − ε)φt. Observe that (he−φ̃t)m ⊗ ωn gives rise to a family

of Hermitian metrics on mL −KX , which is in fact a C1,1 subgeodesic whenever

m satisfies mεω > −Ric(ω). Indeed, let S := {0 < Re s < 1} ⊂ C be the unit

strip and let π : S×X → X denote the projection to the second component. Then

(he−φ̃Re s)m ⊗ ωn induces a Hermitian metric on π∗(mL−KX) over S ×X whose

curvature form satisfies

π∗(mω + Ric(ω)) +m(1− ε)ddcS×XφRe s > 0

whenever mεω > −Ric(ω). It then follows from Proposition 6 that

Hm,t 6 H φ̃t
m for t ∈ [0, 1],

where [0, 1] 3 t 7→ Hm,t is the Bergman geodesic in Pm(X,L) joining H0
m and

H
(1−ε)φ
m with Hm,0 = H0

m and Hm,1 = H
(1−ε)φ
m . So we obtain that

Em(FS(Hm,t)) > Em(FS(H φ̃t
m )) for t ∈ [0, 1],

with equality at t = 0, 1. Fixing an H0
m-orthonormal basis {si} of Rm, then we

obtain that

Em
(
((1− ε)φ)(m)

)
=

d

dt

∣∣∣∣
t=0

Em(FS(Hm,t)) >
d

dt

∣∣∣∣
t=0

Em(FS(H φ̃t
m )) =

1− ε
dm

∫
X

φ̇0

( dm∑
i=1

|si|2hm
)
ωn,
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where the last equality is from a direct calculation using the definition of Em.

Now by the first order expansion of Bergman kernels going back to Tian [25] (with

respect to the background metric ω), one has∑dm
i=1 |si|2hm
dm

6
1

(1− ε)V

for all m� 1. So we arrive at (recall φ̇0 6 0)

Em
(
((1− ε)φ)(m)

)
>

1

V

∫
X

φ̇0ω
n = E(φ),

where the last equality follows from the well-known fact that E is linear along the

geodesic φt. This completes proof.

One can also bound E from below in terms of Em on the Bergman space

Bm(X,ω).

Proposition 8. For any ε > 0, there exists m0 = m0(X,L, ω, ε) ∈ N such that

Em(φ) 6 (1− ε)E(φ) + ε supφ+ ε.

for any m > m0 and φ ∈ Bm(X,ω).

Proof. For any ϕ ∈ Bm, we may write ϕ = 1
m log

∑dm
i=1 e

λi |si|2hm for some Hm-

orthonormal basis {si} and λi ∈ R. Set λmax := maxi{λi} and ϕ(t) := 1
m log

∑dm
i=1 e

λit|si|2hm , t >
0. Note that E is convex along Bergman geodesics (cf. [16, Proposition 1]). Thus

E(ϕ) = E(ϕ1)− E(ϕ0) + E(ϕ0)

>
d

dt

∣∣∣∣
t=0

E(ϕt) + E(ϕ0)

=
1

V

∫
X

ϕ̇0ω
n
ϕ0

+ E(ϕ0)

=
1

mV

∫
X

∑dm
i=1 λi|si|2hm∑dm
i=1 |si|2hm

ωnϕ0
+ E(ϕ0)

=
1

mV

∫
X

∑dm
i=1(λi − λmax)|si|2hm

ρm
ωn1
m log ρm

+
λmax
m

+ E(
1

m
log ρm),

where ρm :=
∑dm
i=1 |si|2hm . For each m� 1 let {σi}dmi=1 be an Hm-orthonormal basis

of H0(X,mL). By the classical Bergman kernel asymptotics,

ρm
dm

C∞−−→ 1

V
, (1.7)
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implying that

Bm 3
1

m
log ρm

C∞−−→ 0. (1.8)

Using (1.7) and (1.8), one finds εm → 0 (independent of ϕ ∈ Bm) such that

E(ϕ) >
1 + εm
mdm

∫
X

dm∑
i=1

(λi − λmax)|si|2hmωn +
λmax
m
− εm

=
1 + εm
mdm

dm∑
i=1

(λi − λmax) +
λmax
m
− εm

= (1 + εm)

(
Em(ϕ)− λmax

m

)
+
λmax
m
− εm.

Then the desired inequality follows.

4. Proving the main result

Let (X,L) be a polarized Kähler manifold. The goal of this chapter is to prove

Theorem 2, namely,

δ(L) = δA(L).

The first step is to show that δm(L) = δAm(L) whenever m is sufficiently large. The

second step is then to push everything to limit as m→∞.

4.1 At level m

The goal of this part is to show the following result.

Theorem 9. For all m� 1, one has

δm(L) = δAm(L).

In Proposition 10 we show that to compute δm-invariant, it is enough to consider

all the orthonormal basis of H0(X,mL) with respect to a fixed Hermitian inner

product H ∈ Pm. We apply this to conclude that δm(L) 6 δAm(L) (Corollary 11).

Proposition 10. For any H ∈ Pm,

δm(L) = sup

{
δ > 0 : sup

{si}H-o.n.b.

∫
X

ωn∏dm
i=1 |si|

2δ
mdm

hm

<∞
}
.



34 Kewei Zhang

Proof. We claim that

δm(L;H) = sup

{
δ > 0 :

∫
X

ωn∏dm
i=1 |si|

2δ
mdm

hm

<∞, for all H-orthonormal bases {si}dmi=1

}
.

(1.9)

Indeed, denote the RHS of (1.9) by δ̃m(L;H). Then clearly δm(L;H) 6 δ̃m(L;H).

If δm(L;H) < δ̃m(L;H), then we can find δ ∈ (δm(L;H), δ̃m(L;H)) and a sequence

of H-orthonormal bases {s(j)
i }

dm
i=1 such that

lim
j→∞

∫
X

ωn∏dm
i=1 |s

(j)
i |

2δ
mdm

hm

=∞.

Up to a subsequence, {s(j)
i } converges smoothly to an H-orthonormal basis {s(∞)

i }.
Then by the lower semi-continuity of complex singularity exponents [12, Theorem

0.2(3)],

lim
j→∞

∫
X

ωn∏dm
i=1 |s

(j)
i |

2δ
mdm

hm

=

∫
X

ωn∏dm
i=1 |s

(∞)
i |

2δ
mdm

hm

<∞,

a contradiction. This proves (1.9).

Now for any F over X, we consider the filtration (1.3). Given H ∈ Pm, observe

that one can choose a compatible H-orthonormal basis {si} so Sm(F ) = ordF (π?D)

with D the basis divisor associated to {si}dmi=1. Namely,

Sm(F ) = sup
{

ordF (D) : m-basis divisor D arising from H-orthonormal basis
}
.

(1.10)

Combining (1.5) and (1.10),

δm(L) = inf
{

lct(X,D) : m-basis divisor D arising from H-orthonormal basis
}
.

Thus, by the analytic interpretation of lct [20, §8],

δm(L) = sup

{
δ > 0 :

∫
X

ωn∏dm
i=1 |si|

2δ
mdm

hm

<∞, for all H-orthonormal bases {si}dmi=1

}
.

Combining this with (1.9) concludes the proof.

Corollary 11. δm(L) 6 δAm(L).

Proof. We first reformulate Definition 5. Fix a reference Hermitian inner product

H ∈ Pm. Then Em (1.6) can be expressed by

Em(H,ϕ) =
1

mdm
log det

[
H(σi, σj)

]dm
i,j=1

, (1.11)
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for any ϕ = FS(K) = 1
m log

∑dm
i=1 |σi|2hm ∈ Bm, where {σi} is K-orthonormal. By

linear algebra, for any basis {σi} of H0(X,mL), after a unitary transformation,

one may diagonalize it so that

σi = µ
1/2
i si

for some H-orthonormal basis {si}, with µi > 0. Using such convention, one can

also write

Em(H,ϕ) =
1

mdm
log

dm∏
i=1

µi. (1.12)

Note that a different choice of H will only shift Em by a constant. Thus, Definition

5 becomes

δAm(L) = sup

{
δ > 0 : sup

{si}H-o.n.b.
µi>0

∫
X

∏dm
i=1 µ

δ
mdm
i(∑dm

i=1 µi|si|2hm
) δ
m

ωn <∞
}
. (1.13)

By the arithmetic mean–geometric mean inequality,

dm∑
i=1

µi|si|2hm > dm

( dm∏
i=1

µi

) 1
dm
( dm∏
i=1

|si|2hm
) 1
dm
,

thus for any H-orthonormal basis {si} and parameters µi > 0,∫
X

∏dm
i=1 µ

δ
mdm
i

(
∑dm
i=1 µi|si|2hm)

δ
m

ωn 6

(
1

dm

) δ
m

·
∫
X

ωn∏dm
i=1 |si|

2δ
mdm

hm

,

and the statement follows from Proposition 10.

We now turn to proving the harder inequality,

δm(L) > δAm(L). (1.14)

Our strategy is as follows. Fix a prime divisor F over X. We find an H-orthogonal

basis {si} of H0(X,mL) such that the integral∫
X

∏dm
i=1 µ

δ
mdm
i(∑dm

i=1 µi|si|2hm
) δ
m

ωn (1.15)

has no uniform upper bound for an appropriate choice of positive numbers {µi},
whenever δ satisfies δ > AX(F )

Sm(F ) . This implies δAm(L) 6 infF
AX(F )
Sm(F ) = δm(L), i.e.,

(1.14), which, when combined with Corollary 11 will conclude the proof of Theorem

9.



36 Kewei Zhang

Definition 12. Let F be a prime divisor over X and let {si} be an H-orthonormal

basis of H0(X,mL) compatible with the filtration (1.3). The Bergman geodesic

ray associated to (F, {si}) is

ϕF (t) :=
1

m
log

dm∑
i=1

et ordF (si)|si|2hm ∈ Bm, t ∈ R. (1.16)

A simple, but key, observation is that the mth expected vanishing can be viewed

as the slope of the Monge–Ampère energy.

Lemma 13. Let ϕ(t) be defined by (1.16). Then, Em(H,ϕF (t)) = tSm(F ).

Proof. By (1.12), Em(H,ϕF (t)) = t
mdm

∑dm
i=1 ordF (si). For any basis {si} compat-

ible with the filtration,

dm∑
i=1

ordF (si) =

∞∑
j=0

j
[

dimH0(Y,mπ?L− jF )− dimH0(Y,mπ?L− (j + 1)F )
]

=

∞∑
j=1

dimH0(Y,mπ?L− jF ),

where in the last line we used that H0(Y,mπ?L− jF ) vanishes for large enough j

(recall (1.3)). Thus, by the definition of Sm the proof is complete.

Fix F ⊂ Y over X and let {si} be a basis as in the proof of Lemma 13.

We evaluate (1.15) along the Bergman geodesic ϕF (t) of Definition 12, i.e., put

µi(t) = et ordF (si), and use Lemma 13,

(1.15)(t) =

∫
X

etδSm(F )(∑dm
i=1 e

t ordF (si)|si|2hm
) δ
m

ωn

= et(δSm(F )−AX(F ))

∫
X

etAX(F )(∑dm
i=1 e

t ordF (si)|si|2hm
) δ
m

ωn.

(1.17)

Now the key estimate is the following.

Lemma 14. There exists C > 0 such that∫
X

etAX(F )(∑dm
i=1 e

t ordF (si)|si|2hm
) δ
m

ωn > C > 0, for all t > 0.
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Proof. Let Z := π(F ) denote the center of the divisorial valuation ordF on X. We

will show that the desired estimate follows from a local calculation around Z. More

percisely, Let Ω be a tubular neighborhood around Z. It suffices to find some η > 0

such that ∫
Ω

etAX(F )(∑dm
i=1 e

t ordF (si)|si|2hm
) δ
m

ωn > η > 0

for any t > 0. We will achieve this estimate by pulling back everything to Y . Note,

KY = π?KX + (AX(F )− 1)F +D, (1.18)

where D is some divisor whose support does not contain F . Then we choose a

small enough coordinate chart(
U, (z1, · · · , zn)

)
⊆ Y,

centered around some smooth point of F with the following properties:

1. U is away from all the other exceptional divisors of π (i.e., U ∩ Supp(D) = ∅);
2. Over U , one has F = {z1 = 0};

U contains the polydisk D :=

{
(z1, ..., zn) : |zi| 6 1, ∀i

}
;

3. π?(mL) is trivialized over D, so that each π?si can be represented as π?si =

z
ordF (si)
1 gi(z), where gi(z) is some holomorphic function on D;

4. In the above trivialization, there exists some constant C > 0 such that hm <

C, |gi|2 < C, ∀i.
Using (1.18) and (2), the volume form π?ωn can be replaced (up to some bounded

factor) by

|z1|2AX(F )−2(
√
−1)ndz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn,

since we are working away from D.

Therefore, to finish the proof of Lemma 14, it suffices to find some constant

c > 0 such that for any t > 0,∫
D

etAX(F )|z1|2AX(F )−2(∑dm
i=1 e

t ordF (si)|z1|2ordF (si)|gi|2hm
) δ
m

(
√
−1)ndz1∧dz1∧· · ·∧dzn∧dzn > c > 0.
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Using condition (5) above, it suffices to bound

J(t) :=
√
−1

∫
|z1|61

etAX(F )|z1|2AX(F )−2(∑dm
i=1 |et/2z1|2ordF (si)

) δ
m

dz1 ∧ dz̄1

=
√
−1

∫
|w|6et/2

|w|2(AX(F )−1)(∑dm
i=1 |w|2ordF (si)

) δ
m

dw ∧ dw̄

>
√
−1

∫
|w|61

|w|2(AX(F )−1)(∑dm
i=1 |w|2ordF (si)

) δ
m

dw ∧ dw̄,

where in the last inequality we used t > 0. This last integral is some positive

quantity depending only on δ, m, AX(F ) and {ordF (si)}16i6dm . This completes

the proof of Lemma 14.

Corollary 15. δm(L) > δAm(L).

Proof. By (1.17) and Lemma 14, limt→∞ (1.15)(t) = ∞ if δ > AX(F )
Sm(F ) . Thus,

by (1.13), δAm(L) 6 AX(F )
Sm(F ) . Taking the infimum over all F and using (1.4) we

conclude.

Proof of Theorem 9. This follows from Corollaries 11 and 15.

4.2 Taking the limit

We begin by recalling the α-invariant of Tian [24]. Set

α(L) := sup

{
α > 0

∣∣∣∣∃Cα > 0 s.t.

∫
X

e−α(φ−supφ)ωn < Cα for all φ ∈ H(X,ω)

}
.

(1.19)

Note that α(L) will be used several times in what follows, as it can effectively

control bad terms when doing integration.

Now we are ready to prove the following main result.

Theorem 16. Let L be an ample line bundle, then one has δA(L) = δ(L)

Proof. The proof splits into two steps.

Step 1: δA(L) 6 δ(L).

By Theorem 9, it suffices to show that, for any λ ∈ (0, δA(L)) one has δm(L) > λ

for all m � 1. In other words, for any m � 1, we need to find some constant
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Cm,λ > 0 such that∫
X

e−λ(φ−Em(φ))ωn < Cm,λ for all φ ∈ Bm(X,ω).

Assume that supφ = 0. For any small ε > 0, by Proposition 8 and Hölder’s

inequality,∫
X

e−λ(φ−Em(φ))ωn 6
∫
X

e−λ(φ−(1−ε)E(φ))+λεdµθ = eλε ·
∫
X

e−λ(1−ε)(φ−E(φ)) · e−λεφωn

6 eλε
(∫

X

e
−λ(1−ε)
1−λε

α

(φ−E(φ))
ωn
)1−λεα (∫

X

e−αφωn
)λε

α

holds for all m > m0(X,L, ω, ε), where α ∈ (0, α(L)) is some fixed number. We

may fix ε� 1 such that
λ(1− ε)
1− λε

α

< δA(L).

Then by (1.2) and (1.19), there exist Cλ > 0 and Cα > 0 such that∫
X

e−λ(φ−Em(φ))ωn < eλε(Cλ)1−λεα (Cα)
λε
α

for all φ ∈ Bm(X,ω) whenever m is large enough. This proves the assertion.

Step 2: δA(L) > δ(L).

It suffices to show that, for any λ ∈ (0, δ(L)), there exists Cλ > 0 such that∫
X

e−λ(φ−E(φ))ωn < Cλ for any φ ∈ H(X,ω).

Again assume that supφ = 0. Fix any number α ∈ (0, α(L)). Let also ε > 0 be a

sufficiently small number, to be fixed later. Set φ̃ := (1− ε)φ. Then by Proposition

7 and the generalized Hölder inequality, for any m > m0(X,L, ω, ε), we can write∫
X

e−λ
(
φ−E(φ)

)
ωn 6

∫
X

e−λ
(
φ−Em(φ̃(m))

)
ωn =

∫
X

eλ
(
φ̃(m)−φ̃

)
· e−λ

(
φ̃(m)−Em(φ̃(m))

)
· e−λεφωn

6

(∫
X

em(φ̃(m)−φ̃)ωn
) λ
m
(∫

X

e

−λ
(
φ̃(m)−Em(φ̃(m))

)
1− λ

m
−λε
α ωn

)1− λ
m−

λε
α
(∫

X

e−αφωn
)λε

α

= (dm)
λ
m

(∫
X

e

−λ
(
φ̃(m)−Em(φ̃(m))

)
1− λ

m
−λε
α ωn

)1− λ
m−

λε
α
(∫

X

e−αφωn
)λε

α

,

where we used the fact ∫
X

em(φ̃(m)−φ̃)ωn = dm
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in the last equality. We now fix ε� 1 and m� m0(X,L, ω, ε) such that

λ

1− λ
m −

λε
α

< δm(L).

Then by Definition (5) and (1.19) there exist Cm,λ > 0 and Cα > 0 (recall supφ =

0) such that ∫
X

e−λ(φ−E(φ))ωn < (dm)
λ
m · (Cm,λ)1− λ

m−
λε
α · (Cα)

λε
α .

Note that all the constants are uniform, independent of φ. So we finally arrive at∫
X
e−λ(φ−E(φ))ωn < Cλ for some uniform Cλ > 0, as desired.

Proof of Theorem 3. The result follows from Theorem 2 and the property of Ding

functionals.
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