
DELTA INVARIANTS OF PROJECTIVE BUNDLES

KEWEI ZHANG

Abstract. We compute the δ-invariants of projective bundles of Fano type.
This is a baby version of the joint work [23].

1. Introduction

Given an arbitrary Fano manifold X, it is often the case that X does not admit
any Kähler–Einstein (KE) metric. But still, X could admit twisted KE or conical
KE metrics. To study these metrics and their degenerations, some analytic and
algebraic thresholds play important roles. For instance, the greatest Ricci lower
bound β(X) of Tian [21] measures how far X is away from being a KE manifold.
As shown in [1, 5], β(X) is equal to the algebraic δ-invariant δ(X), which serves as
the right threshold for X to be Ding stability (cf. [?, 1, 4]).

More precisely, suppose that X does not admit KE metrics. For any µ ∈
(0, β(X)), we can find a Kähler form ω ∈ 2πc1(X) such that Ric (ω) ≥ µω. An
interesting problem would be to study the Gromov–Hausdorff limit of (X,ω) as
µ → β(X). By [17], the limit is homeomorphic to a Q-Fano variety, which is
supposed to be the optimal degeneration of X in a suitable sense. To study this
problem, it could be enlightening if we have some explicit examples to play with.
We refer the reader to [20, 19, 15] for some discussions in this direction. The pur-
pose of this note is to generalize the construction in [20, Section 3.1] to higher
dimensions. More precisely, we will use the Calabi symmetry of projective bundles
to explictily construct a family of Kähler metrics with Ricci curvature as positive as
possible, with the aid of which we can compute the δ-invariants of such manifolds.

To state the main result, let us fix the notation that will be used throughout.
Let X be an n-dimensional Fano manifold with Fano index I(X) ≥ 2. So we can
find an ample line bundle L such that

(1.1) L = −λKX for some λ ∈ (0, 1).

We put
Y := P(L−1 ⊕OX)

π−→ X.

Let E0 denote the zero section and E∞ the infinity section. Then

−KY = π∗(−KX) + E0 + E∞ ∼Q (1/λ+ 1)E∞ − (1/λ− 1)E0

is ample and hence Y is an (n+ 1)-dimensional Fano manifold. We put

(1.2) β0 :=

(
n+ 1

n+ 2
· (1/λ+ 1)n+2 − (1/λ− 1)n+2

(1/λ+ 1)n+1 − (1/λ− 1)n+1
− (1/λ− 1)

)−1
.

Using binomial formula, one can easily verify the following elementary fact:

(1.3) β0 ∈ (1/2, 1).
1
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The main result is the following

Theorem 1.1. One has

β(Y ) = δ(Y ) = min

{
δ(X)β0

λ+ β0(1− λ)
, β0

}
.

In particular, Y cannot admit KE metrics 1. But as we shall see in Section 2,
Y does admit a family of twisted conical KE metrics. When δ(X) ≥ λ+ β0(1− λ)
(this holds for example when X is K-semistable), we deduce that

(1.4) δ(Y ) = β0.

As we will show, in this case E0 computes δ(Y ). This generalizes the example
Y = Bl1P2 treated in [20]. Indeed, when Y = Bl1P2, one has X = P1, n = 1 and
λ = 1/2, so that δ(Y ) = β0 = 6/7, which agrees with the result obtained in [20, 14].
In the case of δ(X) ≤ λ+ β0(1− λ), Theorem 1.1 gives

(1.5) δ(Y ) =
δ(X)β0

λ+ β0(1− λ)
.

In this case, there always exists a prime divisor F over X computing δ(X) (see [4,
Theorem 6.7]). This divisor naturally induces a divisor F over Y , and we will show
that δ(Y ) is computed by F when (1.5) takes place. See Section 5 for an explicit
example.

Remark 1.2. In [22], Zhuang derived the δ-invariants of product spaces. In par-
ticular, let Y = X × P1 be the trivial P1-bundle over X, then

δ(Y ) = min{δ(X), 1}.

So to some extent, Theorem 1.1 generalizes this product formula.

The proof of Theorem 1.1 essentially makes use of the natural C∗-action on
Y . On the analytic side, this toruc action allows us to carry out the momentum
construction due to Calabi, from which we will derive a lower bound for β(Y ) in
Section 2. On the algebraic side, by using this torus action and the lct definition of
δ-invariant, we show in Section 3 that the obtained lower bound also bounds δ(Y )
from above, so we conclude the main result. In Section 4 we provide several useful
properties of Y , which will be applied in Section 5 to investigate some concrete
examples.

2. The lower bound

To derive a lower bound for β(Y ), we follow the approach in [20, Section 3.1],
using Calabi ansatz to construct a family of Kähler metrics η ∈ 2πc1(Y ) with Ricci
curvature as positive as possible. Similar treatment also appears in [16, Section
3.2].

We fix
µ ∈ (0, β(X))

and choose Kähler forms ω, α ∈ 2πc1(X) such that

(2.1) Ric (ω) = µω + (1− µ)α.

1By [13], Y always admits a Kähler Ricci soliton metric.
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Then the momentum construction due to Calabi can provide Kähler metrics η on
Y of the form (in special local coordinates)

η = λτπ∗ω + ϕ

√
−1dw ∧ dw
|w|2

,

whose Ricci forms are given by

(2.2)
Ric (η) =

(
µ− nλϕ

τ
− λϕ′

)
π∗ω + (1− µ)π∗α

− ϕ
(
n
ϕ

τ
+ ϕ′

)′√−1dw ∧ dw
|w|2

.

Here ϕ = ϕ(τ) with τ ∈ (1/λ− 1, 1/λ+ 1) is a one-variable positive function to be
determined and w denotes the fiberwise coordinate. To cook up η ∈ 2πc1(Y ) with
Ric (η) ≥ βη (possibly in the current sense), we will impose the following conditions
for ϕ:

(2.3)


ϕ(1/λ− 1) = ϕ(1/λ+ 1) = 0,

ϕ′(1/λ− 1) ∈ (0, 1],

ϕ′(1/λ+ 1) ∈ [−1, 0),
and

(2.4) −
(
n
ϕ

τ
+ ϕ′

)′
= β for τ ∈ (1/λ− 1, 1/λ+ 1),

where β is any constant that satisfies

(2.5) 0 < β ≤ min

{
µβ0

λ+ β0(1− λ)
, β0

}
.

Let us explain the exact meanings of these conditions. The boundary condition
(2.3) makes sure that η ∈ 2πc1(Y ) and η possibly possesses certain amount of edge
singularities along E0 and E∞. Solving the ODE (2.4), we obtain that

(2.6) τnϕ = − β

n+ 2
τn+2 +Aτn+1 +B

where {
A = β

n+2 ·
(1/λ+1)n+2−(1/λ−1)n+2

(1/λ+1)n+1−(1/λ−1)n+1 ,

B = −2β
n+2 ·

(1/λ2−1)n+1

(1/λ+1)n+1−(1/λ−1)n+1 .

From this, we easily derive that

(2.7)

{
β1 := ϕ′(1/λ− 1) = β

β0
,

β2 := −ϕ′(1/λ+ 1) = β(2β0−1)
β0

.

Then (1.3) and (2.5) simply imply that

0 < β2 < β1 ≤ 1.

So η has edge singularities with angles β1 and β2 along E0 and E∞ respectively.
Moreover (2.5) also guarantees that

µ− nλϕ
τ
− λϕ′ = µ− λβ1 − β(1− λ− τ)

= (µ− λβ/β0 − β(1− λ)) + τβ

≥ τβ.

(2.8)
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Therefore η satisfies Ric (η) ≥ βη in the current sense. More precisely, η solves the
following twisted Kähler–Einstein edge equation:

Ric (η) = βη +
(
µ− λβ/β0 − β(1− λ)

)
π∗ω + (1− µ)π∗α

+ 2π(1− β/β0)[E0] + 2π
(
1− β(2β0 − 1)/β0

)
[E∞].

(2.9)

This implies that (using [5, Theorem 5.7] and [1, Theorem C])

(2.10) β(Y ) = δ(Y ) ≥ δθ(Y ) ≥ βθ(Y ) ≥ β,
where

θ =
(µ− λβ/β0 − β(1− λ))

2π
π∗ω +

1− µ
2π

π∗α+ (1− β1)[E0] + (1− β2)[E∞]

is a semi-positive current in (1 − β)c1(Y ). Using (2.5) and letting µ → β(X), we
obtain

β(Y ) ≥ min

{
β(X)β0

λ+ β0(1− λ)
, β0

}
.

Finally, applying [5, Theorem 5.7], we get the following

Proposition 2.1. One has

δ(Y ) ≥ min

{
δ(X)β0

λ+ β0(1− λ)
, β0

}
.

Remark 2.2. There is a direct and purely algebraic proof of this if one uses that
fact that δT (Y ) = δ(Y ) (cf. [10]). Here T = C∗ acts naturally on the fibers. So
it suffices to investigate T -invariant divisor over Y and the argument in the next
section also proceeds to give this lower bound.

Now let us go back to our motivation mentioned at the very beginning of this pa-
per. We shall study the degeneration of metrics on Y with positive Ricci curvature
as they approach the roof.

Suppose that X admits a KE metric ωKE ∈ 2πc1(X). (In this case β(Y ) = β0
by Theorem 1.1). Then as in [20, Section 3.1], for any β ∈ (0, β0) we can construct
a smooth Kähler form ωβ ∈ 2πc1(Y ) with Ric (ωβ) > βωβ such that, as β → β0,
one has

(Y, ωβ)
G.H.−−−→ (Y, η),

with η solving

Ric (η) = β0η + (1− λ− β0(1− λ))π∗ωKE + 2π(2− 2β0)[E∞].

In particular the limit space is still Y . This generalizes [20], where an η satisfying

Ric (η) =
6

7
η +

1

7
π∗ωFS + 2π(1− 5

7
)[E∞]

was constructed on Bl1P2.
Suppose in general that X does not necessarily admit KE, but β(X) > λ +

β0(1 − λ). (In this case again β(Y ) = β0 by Theorem 1.1). We choose µ ∈
(λ+ β0(1− λ), β(X)) and hence there are Kähler forms ω, α ∈ 2πc1(X) satisfying
(2.1). Then the same construction as in [20, Section 3.1] shows that, for any
β ∈ (0, β0) there is a smooth Kähler form ωβ ∈ 2πc1(Y ) with Ric (ωβ) > βωβ
such that, as β → β0, one has

(Y, ωβ)
G.H.−−−→ (Y, η),
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with η solving

Ric (η) = β0η + (µ− λ− β0(1− λ))π∗ω + (1− µ)π∗α+ 2π(2− 2β0)[E∞].

So as in the previous case, the limit space is still Y itself. Note that the limit metric
η is not unique (as µ, ω and α are allowed to vary).

Finally, suppose that β(X) ≤ λ + β0(1 − λ). Then by Theorem 1.1, β(Y ) =
δ(X)β0)

λ+β0(1−λ) . This case turns out to be more subtle. Firstly, it seems that the Calabi
ansatz does not easily provide smooth Kähler forms ωβ such that Ric (ω) ≥ βωβ as
β → β(Y ). Secondly, as µ → β(X), the Kähler form ω we chose from the base X
(recall (2.1)) is supposed to develop certain singularities (see [18]), which suggests
that X itself would degenerate in the Gromov-Hausdorff topology to some other
Q-Fano variety. So at this stage it is unclear how Y would degenerate. We leave
this case to future studies.

Remark 2.3. It is worth mentioning that, Calabi ansatz also applies to projective
bundles of higher ranks (see [11] for more general discussions).

3. The upper bound

As we have seen, both

β0 and
δ(X)β0

λ+ β0(1− λ)
arise naturally from Calabi’s ODE. In this section, by using the definition of δ-
invariant (cf. [9, 3]), we shall show that they also have purely algebraic interpreta-
tions and that they naturally bound δ(Y ) from above, which hence completes the
proof of Theorem 1.1.

We begin with the following simple lemma, which justifies the appearance of β0.

Lemma 3.1. One has
δ(Y ) ≤ AY (E0)

S−KY
(E0)

= β0.

Proof. This follows from a straightforward calculation. Indeed, one has AY (E0) = 1
and

S−KY
(E0) =

1

(−KY )n+1

∫ ∞
0

Vol(−KY − tE0)dt

=
1

(−KY )n+1

∫ 2

0

(
(1/λ+ 1)E∞ − (t+ 1/λ− 1)E0

)n+1

dt

=
2(1/λ+ 1)n+1 −

(
(1/λ+ 1)n+2 − (1/λ− 1)n+2

)
/(n+ 1)

(1/λ+ 1)n+2 − (1/λ− 1)n+2

=
n+ 1

n+ 2
· (1/λ+ 1)n+2 − (1/λ− 1)n+2

(1/λ+ 1)n+1 − (1/λ− 1)n+1
− (1/λ− 1).

So the result follows. �

A combination of Proposition 2.1 and Lemma 3.1 gives the following consequence.

Corollary 3.2. Suppose that

δ(X) ≥ λ+ β0(1− λ),
then one has

δ(Y ) = β0
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and δ(Y ) is computed by the divisor E0 ⊆ Y .

Now let us give an algebraic explanation for the quantity
δ(X)β0

λ+ β0(1− λ)
.

For any prime divisor F over X, we put

(3.1) δX(F ) :=
AX(F )

S−KX
(F )

.

Let X φ−→ X be a log resolution of X such that F ⊆ X. Then we have the following
commutative diagram

Y Y

X X

φ

π π

φ

where
Y := P

(
φ∗(L−1 ⊕OX)).

Set
F := π∗F

and

δY (F ) :=
AY (F )

S−KY
(F )

.

Then it is easy to check that

(3.2) AY (F ) = AX(F ).

Proposition 3.3. For any prime divisor F over X, we have

δY (F ) =
δX(F )β0

λ+ β0(1− λ)
.

So by taking inf over all F , we get

Corollary 3.4. We have

(3.3) δ(Y ) ≤ δ(X)β0
λ+ β0(1− λ)

.

Combining this with Proposition 2.1 and Lemma 3.1, Theorem 1.1 follows im-
mediately.

To prove Proposition 3.3, we use the fact that Y is a T -variety, where T = C∗ acts
multiplicatively on P1-fibers. So for any m ≥ 1, we have a weight decomposition:

(3.4) Rm := H0(Y,−mKY ) =
⊕
j∈Z

Rjm,

where
Rjm := {s ∈ H0(Y,−mKY ) | τ · s = τ js, τ ∈ T}.

More precisely, each Rjm consists of those sections that vanish along E0 with order
j, i.e.,

Rjm := {s ∈ H0(Y,−mKY ) | ordE0
s = j}.

One can easily compute the dimension of each Rjm. Indeed, we write

(3.5) −KX = IH,
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where I := I(X) is the Fano index of X and H is an ample line bundle on X. Then
for any j ∈ Z we can write

(3.6) −mKY ∼
(
jIλ+mI(1− λ)

)
π∗H + jE0 + (2m− j)E∞.

Moreover any T -invariant divisor in | −mKY | can be written in this form. So we
deduce that

(3.7) dimCR
j
m =

{
h0
(
X,
(
jIλ+mI(1− λ)

)
H
)
, 0 ≤ j ≤ 2m,

0, otherwise.

Now given a prime divisor F over X, let us construct an m-basis type divisor
Dm ∼Q −KY that is compatible with the filtration on Rm induced by ordF . Note
that, for each j ∈ {1, ..., 2m}, ordF induces a filtration of Rjm, from which we can
choose a compatible basis {sji} with i ∈ {1, ...,dimCR

j
m}. Let Dj

i be the divisor
cut out by sji and we put

(3.8) Dm :=
1

m
∑2m
k=0 dimRkm

2m∑
j=0

dimRj
m∑

i=1

(
π∗Dj

i + jE0 + (2m− j)E∞
)
.

Then Dm ∼Q −KY is an m-basis type divisor that is compatible with the filtration
induced by ordF . In particular, by the proof of [9, Lemma 2.2],

(3.9) lim
m→∞

ordF (Dm) = S−KY
(F ).

Lemma 3.5. We also have

lim
m→∞

ordF (Dm) =
λ+ β0(1− λ)

β0
S−KX

(F ).

Here λ+β0(1−λ)
β0

= n+1
n+2 ·

(1+λ)n+2−(1−λ)n+2

(1+λ)n+1−(1−λ)n+1 .

Proof. Note that

ordF (Dm) = ordF

(∑2m
j=0

∑dimRj
m

i=1 Dj
i

m
∑2m
k=0 dimRkm

)

Moreover we have the following three asymptotic calculations.

(1) For each j, the chosen basis {sji} of Rjm is adapted to ordF , so by [9, Lemma
2.2], we have

lim
m→∞

ordF

( ∑dimRj
m

i=1 Dj
i(

jIλ+mI(1− λ)
)
dimRjm

)
= SH(F ) =

S−KX
(F )

I
.

This convergence is uniform for all j.
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(2) One has∑2m
j=0 jIλdimRjm

mn+2/n!
=

2m∑
j=0

jIλ

m
·
h0
(
X,m

(
jIλ/m+ I(1− λ)

)
H
)

mn/n!
· 1
m

m→∞−−−−→ 1

Iλ

∫ 2Iλ

0

xVol
(
(x+ I(1− λ))H

)
dx

=
HnIn+1

λ

∫ 2λ

0

t
(
t+ (1− λ)

)n
dt

=
HnIn+1

(n+ 1)λ

(
2λ(1 + λ)n+1 − (1 + λ)n+2 − (1− λ)n+2

n+ 2

)
.

(3) One has∑2m
j=0 dimRjm

mn+1/n!
=

2m∑
j=0

h0
(
X,m

(
jIλ/m+ I(1− λ)

)
H
)

mn/n!
· 1
m

m→∞−−−−→ 1

Iλ

∫ 2Iλ

0

Vol
(
(x+ I(1− λ))H

)
dx

=
HnIn

λ

∫ 2λ

0

(
t+ (1− λ)

)n
dt

=
HnIn

(n+ 1)λ

(
(1 + λ)n+1 − (1− λ)n+1

)
.

Putting all these together, for m� 1,

ordF (Dm) =
n+ 1

n+ 2
· (1 + λ)n+2 − (1− λ)n+2

(1 + λ)n+1 − (1− λ)n+1
· S−KX

(F ) + εm,

where εm → 0 as m→∞. So the assertion follows. �

Proof of Proposition 3.3. By (3.2), (3.9) and Lemma 3.5, we have

δY (F ) =
AY (F )

S−KY
(F )

= lim
m→∞

AY (F )

ordF (Dm)

=
AX(F )β0(

λ+ β0(1− λ)
)
S−KX

(F )

=
δX(F )β0(

λ+ β0(1− λ)
) .

�

So Theorem 1.1 is proved. Proposition 3.3 also implies that, in the case when

δ(Y ) =
δ(X)β0

λ+ β0(1− λ)
,

δ(Y ) is computed by some F , where F is a divisor over X that computes δ(X) (cf.
[4, Theorem 6.7]).
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4. More discussions

The purpose of this section is to include some properties of the projective bundle
Y , which can be used to explicitly calculate δY (F ) in some special cases. Let F ⊆ X
be a prime divisor. We define the nef threshold of F to be

(4.1) εX(F ) := sup{t > 0 | −KX − tF is nef}.

The pseudo-effective threshold of F is defined as

(4.2) τX(F ) := sup{t > 0 | −KX − tF is big}.

Put
F := π∗F.

One can define εY (F ) and τY (F ) analogously on Y as well.

Lemma 4.1. One has
εY (F ) = (1− λ)εX(F ).

Proof. We write

−KY − tF ∼R π
∗(− (1− λ)KX − tF

)
+ 2E∞.

Let C * E0 be any curve, then for any t ∈ (0, (1− λ)εX(F )], one clearly has

(−KY − tF ) · C ≥ 0.

Now consider C ⊆ E0. Then by projection formula,

(−KY − tF ) · C = (−(1− λ)KX − tF ) · π∗C.

Thus −KY − tF is nef if and only if

t ∈ (0, (1− λ)εX(F )].

�

Lemma 4.2. For any R-divisor D ⊆ X, we have

Vol(π∗D) = 0.

Proof. If not, then π∗D is big so there exists an ample R-divisor A and an effective
R-divisor B on Y such that π∗D ∼R A+B. Then for any generic P1-fiber f ⊆ Y ,
one has 0 = π∗D · f = (A+B) · f > 0, which is a contradiction. �

Lemma 4.3. Let D ⊆ X be an R-divisor that is not big. Then

Vol(π∗D + aE0) = 0 for any a ≥ 0.

Proof. We make use of the restricted volume. Thinking of E0 as a copy of X sitting
inside Y , then for any a ≥ 0, one has

(π∗D + aE0)|E0 = D − aL,

which is thus not big. Let

b := sup{a ≥ 0 | Vol(π∗D + aE0) = 0}.

So it amounts to showing that b = +∞. Assume to the contrary that b < +∞. Put

f(t) := Vol(π∗D + bE0 + tE0), t ∈ [0,∞).
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By the previous lemma, f(0) = 0. And f(t) is a non-decreasing positive C1 function
when t ∈ (0,∞) by [2, Theorem A]. Moreover, for any t > 0, one has

d

dt
f(t) = nVolY |E0

(π∗D + (b+ t)E0) ≤ nVol(X,D − (b+ t)L) = 0.

This implies that f(t) = f(0) = 0 for any t > 0, a contradiction. �

Lemma 4.4. One has

τY (F ) = (1 + λ)τX(F ).

Proof. We write

−KY − tF ∼R π
∗(− (1 + λ)KX − tF

)
+ 2E0.

Thus −KY −tF is linearly equivalent to a pseudo-effective R-divisors for t ∈
[
0, (1+

λ)τX(F )
]
. Moreover, for any t ≥ (1 + λ)τX(F ), −(1 + λ)KX − tF is not big, so

Vol(−KY − tF ) = 0 by the previous lemma. The assertion follows. �

By slightly modifying the argument of Lemma 4.3, the following is clear.

Lemma 4.5. Assume that B ⊆ Y is an R-divisor that is not big when restricted
to E0. Then

Vol(B + aE0) = Vol(B) for any a ≥ 0.

The next result if of course covered by Proposition 3.3, but we shall give an
alternative computational proof, which will be helpful in Section 5.

Proposition 4.6. Assume that F ⊆ X is a prime divisor with εX(F ) = τX(F ),
then one has

δY (F ) =
δX(F )β0

λ+ β0(1− λ)
.

Proof. We write

ε := εX(F )

to ease notation. For t ∈ [0, (1− λ)ε], we have

Vol(−KY − τF ) =
(
(1/λ+ 1)E∞ − (1/λ− 1)E0 − tF

)n+1

=

n∑
i=0

Cin+1(−t)i
(
(1/λ+ 1)n+1−i − (1/λ− 1)n+1−i

)
Ln−i · F i.

For t ∈ [(1− λ)ε, (1 + λ)ε], applying Lemma 4.5, we have

Vol(−KY − tF ) = Vol

(
−KY − tF −

( t
ελ
− (1/λ− 1)

)
E0

)
.

Note that

−KY − tF −
( t
ελ
− (1/λ− 1)

)
E0 ∼R π

∗(− (1 + λ)KX − tF
)
+
(
1/λ+ 1− t

ελ

)
E0
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is clearly nef for t ∈ [(1−λ)ε, (1+λ)ε] (it suffices to check curves contained in E0),
so we get that

Vol(−KY − tF ) =
(
−KY − tF −

( t
ελ
− (1/λ− 1)

)
E0

)n+1

=

(
(1/λ+ 1)E∞ −

t

ελ
E0 − tF

)n+1

=

n∑
i=0

Cin+1(−t)i
(
(1/λ+ 1)n+1−i −

( t
ελ

)n+1−i
)
Ln−i · F i.

Therefore∫ ∞
0

Vol(−KY − tF ) =
n∑
i=0

∫ (1−λ)ε

0

Cin+1(−t)i
(
(1/λ+ 1)n+1−i − (1/λ− 1)n+1−i

)
Ln−i · F idt

+

n∑
i=0

∫ (1+λ)ε

(1−λ)ε
Cin+1(−t)i

(
(1/λ+ 1)n+1−i −

( t
ελ

)n+1−i
)
Ln−i · F idt

=

n∑
i=0

Cin+1

(−1)iεi+1
(
(1 + λ)n+2 − (1− λ)n+2

)
(i+ 1)λn+1−i Ln−i · F i

−
n∑
i=0

Cin+1

(−1)iεi+1
(
(1 + λ)n+2 − (1− λ)n+2

)
(n+ 2)λn+1−i Ln−i · F i.

Thus

S−KY
(F ) =

1

(−KY )n+1

∫ ∞
0

Vol(−KY − tF )dt

=
(1 + λ)n+2 − (1− λ)n+2

(1 + λ)n+1 − (1− λ)n+1

n∑
i=0

Cin+1(−λ)iεi+1 L
n−i · Li

(i+ 1)Ln
n+ 1− i
n+ 2

=
n+ 1

n+ 2
· (1 + λ)n+2 − (1− λ)n+2

(1 + λ)n+1 − (1− λ)n+1

n∑
i=0

Cin
(−λ)iεi+1Ln−i · F i

(i+ 1)Ln
.

On the other hand, we have

S−KX
(F ) =

1

(−KX)n

∫ ε

0

Vol(−KX − tF )

=
1

Ln

n∑
i=0

∫ ε

0

Cin(−λt)iLn−i · F idt

=

n∑
i=0

Cin
(−λ)iεi+1Ln−i · F i

(i+ 1)Ln
.

Thus we arrive at

S−KY
(F ) =

n+ 1

n+ 2
· (1 + λ)n+2 − (1− λ)n+2

(1 + λ)n+1 − (1− λ)n+1
· S−KX

(F )

= λ
(
1/β0 + (1/λ− 1)

)
S−KX

(F ),

so that

δY (F ) =
δX(F )β0

λ+ β0(1− λ)
.
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5. Example

In this section we give an example such that

δ(Y ) =
δ(X)β0

λ+ β0(1− λ)
.

To search for such examples, we need to work in high dimensions. In the literature,
explicit calculations for

∫∞
0

Vol(L − tF )dt have been carried out many times in
dimension 2 and 3 (see e.g., [5, 7, 8]). Note that in these cases, the computation
is relatively simple, mainly due to the fact that there is no small contraction in
dimension 2 or 3, and one only needs to get rid of those divisors that is contained
in the non-nef locus of L − tF . However, in higher dimensions, the non-nef locus
could have large codimension, which makes the computation more subtle. In fact,
as shown in [8, Section 8], one needs to run certain MMP to do the computation. In
this section we take the opportunity to illustrate how this can be done in dimension
4.

Let X = Bl1P3. Note that X itself is a P1-bundle. Let F0 be the exceptional
divisor and F∞ be the pull back of a general hyperplane in P3. Then −KX =
4F∞ − 2F0. Simple calculation shows that εX(F0) = τX(F0) = 2, and by Corollary
3.2, we have

δ(X) = δX(F0) =
14

17
.

We take L = 2F∞ − F0 and Y = P(L−1 ⊕OX), with E0 and E∞ being the zero
and infinity sections respectively. Then we have n = 3, λ = 1/2, so that β0 = 50/71.
Therefore

δX(F0)β0
λ+ β0(1− λ)

=
1400

2057
.

So by Theorem 1.1,

δ(Y ) = min

{
1400

2057
,
50

71

}
=

1400

2057
.

Put F0 := π∗F0. Let us explicitly verify that F0 computes δ(Y ). Indeed, εY (F0) = 1
and τY (F0) = 3. And we have (by the proof of Proposition 4.6)

Vol(−KY−tF0) =

{
(3E∞ − E0 − tF0)

4 = 560− 104t− 48t2 − 8t3, t ∈ [0, 1],

(3E∞ − tE0 − tF0)
4 = 567− 108t− 54t2 − 12t3 + 7t4, t ∈ [1, 3].

From this we obtain that

S−KY
(F0) =

1

560

∫ 1

0

(560− 104t− 48t2 − 8t3)dt

+
1

560

∫ 3

1

(567− 108t− 54t2 − 12t3 + 7t4)dt

=
2057

1400
.

Therefore

δY (F0) =
1400

2057
.
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So we do have the equality:

δ(Y ) = δY (F0) =
δX(F )β0

λ+ β0(1− λ)
=

1400

2057
.

Now choose a prime divisor H ∈ |F∞ − F0|. Then we have εX(H) = 2 and
τX(H) = 4. Moreover δX(H) = 14/15 and

δX(H)β0
λ+ β0(1− λ)

=
280

363
.

Consider H := π∗H. Then εY (H) = 1 and τY (H) = 6. In the following we verify
that

δY (H) =
δX(H)β0

λ+ β0(1− λ)
.

Of course this holds true by Proposition 3.3, but we would like to prove this by
directly computing the integrand Vol(−KY − tH) for t ∈ [0, 6], which requires some
interesting tools that might be useful in other context.

• For t ∈ [0, 1], as −KY − tH is nef, we have

Vol(−KY − tH) = (3E∞ − E0 − tH)4

= 560− 312t+ 48t2.

• For t ∈ [1, 2], we write

−KY − tH ∼R (6− t)F∞ − (3− t)F0 + 2E0,

Its non-nef locus is S := E0 ∩ F0, which is a copy of P2 sitting inside Y
and whose normal bundle is ismorphic to OP2(−1)⊕2. The numerical class
of curves in S generates an extremal ray in NE(Y ). Let Y α−→ Z be the

contraction of this ray and let Y + α+

−−→ Z be the flip of α. Then by [8,
Section 8], Y + is the ample model of −KY − tH for t ∈ (1, 2).

Y Y +

Z

φ

α
α+

Note that Y + can be explicitly constructed as follows (cf. [12]): blow
up the non-nef locus S, then we will get an exceptional divisor that is
isomorphic to P2 × P1, whose normal bundle is ismorphic to OP2(−1) �
OP1(−1); contracting this divisor in the other direction, we get Y +, which
is a smooth projective 4-fold. For any effective divisor D on Y , let D+

denote its strict transform on Y +. Then for t ∈ [1, 2], straightforward
computation gives

Vol(−KY − tH) = (−KY + − tH+
)4

= 559− 308t+ 42t2 + 4t3 − t4.

• Let t ∈ [2, 3]. Thinking of E0 as a copy of Bl1P3, then for any point p ∈ E0,
there exists a curve C ⊆ E0 pass through p such that

(−KY − tH) · C =
(
− (t− 2)F∞ + (t− 1)F0

)
· π∗C < 0.
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So E0 is contained in the non-nef locus of −KY − tH. Subtracting certain
amount of E0, we derive that (one can also directly apply Lemma 4.5 here),
for t ≥ 2,

Vol(−KY − tH) = Vol
(
−KY − tH − (t/2− 1)E0

)
.

Note that

−KY − tH − (t/2− 1)E0 ∼R (6− t)F∞ − (3− t)F0 + (3− t/2)E0,

whose non-nef locus is again S = E0 ∩ F0. Thus for t ∈ [2, 3] we have

Vol(−KY − tH) = Vol
(
−KY − tH − (t/2− 1)E0

)
=
(
−KY + − tH+ − (t/2− 1)E+

0

)4
= 567− 324t+ 54t2 − t4/2.

• For t ∈ [3, 6], write

−KY − tH − (t/2− 1)E0 ∼R (6− t)F∞ + (t− 3)F0 + (3− t/2)E0.

Thinking of F0 as a copy of Bl1P3, for any point p ∈ F0, we can find a
curve C ⊆ F 0 passing through p with(

−KY − tH − (t/2− 1)E0

)
· C < 0.

Thus F0 is contained in the non-nef locus. Subtracting it, we obtain, for
t ≥ 3, that

Vol(−KY − tH) = Vol
(
−KY − tH − (t/2− 1)E0 − (t− 3)F0

)
= Vol

(
(6− t)F∞ + (3− t/2)E0

)
=

(6− t)4

24
Vol(2F∞ − E0)

=
(6− t)4

81
Vol(3F∞ − 1.5E0)

=
(6− t)4

81
Vol(−KY − 3H)

=
(6− t)4

2
.

In conclusion, we have 2

Vol(−KY − tH) =


560− 312t+ 48t2, t ∈ [0, 1];

559− 308t+ 42t2 + 4t3 − t4, t ∈ [1, 2];

567− 324t+ 54t2 − t4/2, t ∈ [2, 3];

(6− t)4/2, t ∈ [3, 6].

Integrating over [0, 6], we obtain that

S−KY
(H) =

1

(−KY )4

∫ 6

0

(Vol(−KY )− tH)dt =
363

280
.

So we have verified that
δY (H) =

δX(H)β0
λ+ β0(1− λ)

2It is interesting to notice that Vol(−KY − tH) is C3-differentiable (but not C4) for t ∈ (0, 6).
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even when εX(H) 6= τX(H).
The above calculation suggests that, it is impractical to prove Proposition 3.3

by a direct computation using MMP.
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