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摘要

摘要

本文将重点研究Fano流形上的δ-不变量与Kähler-Einstein度量的存在性之间的关

系。δ-不变量与田刚教授引入的α-不变量和K-稳定性有着密切的联系。在论文的第一

部分，我们讨论δ-不变量与α-不变量的性质，并证明δ-不变量与流形上的最大Ricci下

界之间的等价关系，这推广了Fujita-Odaka与Blum-Jonsson的相关结果。在论文第二

部分，我们研究如何在复曲面上有效计算δ-不变量。我们的方法是利用复曲面上的相

交数不等式来控制曲面上除子的奇点。特别的，我们将计算三次曲面的δ-不变量并重

新证明该类曲面的K-稳定性。同时我们也将计算一类log Fano曲面δ-不变量，从而得

到一系列新的log K-稳定的复曲面的例子。

关键词：δ-不变量；Kähler-Einstein度量；K-稳定性；α-不变量
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ABSTRACT

ABSTRACT

Computing delta invariants on algebraic surfaces

Kewei Zhang (Math)

Directed by Xiaohua Zhu and Yanir Rubinstein

This thesis mainly studies the relation between the δ-invariant and the existence of

Kähler-Einstein metrics on Fano manifolds. δ-invariant is closely related to the α-

invariant and the K-stability introduced by Tian. In the first part of the thesis, we

discuss the properties of α and δ-invaraints. We will show the equivalence between the

δ-invariant and the greatest Ricci lower bound on Fano manifolds, which generalizes a

result of Fujita-Odaka and Blum-Jonsson. In the second part of this thesis, we will search

for effective methods to calculate δ-invariant on complex surfaces. The main ingredients

of our method is to estimate the singularities of divisors on surfaces via local intersection

inequalities. In particular, we will calculate the δ-invariants and give a new proof of the

K-stability of cubic surfaces. Meanwhile, we will also give a new family of log K-stable

surfaces by calculating their δ-invariants.

KEYWORDS: δ-invariant; Kähler-Einstein metrics; K-stability; α-invariant
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Kähler-Einstein problem

A central problem in Kähler geometry is to find canonical metrics on a given com-

pact Kahler manifold. One important class of canonical metrics is the Kähler-Einstein

(KE) metric. A Kähler metric is KE if the Ricci form of the Kähler metric is a constant

multiple of the Kähler form. As we know, the Ricci form of a Kähler metric must lie in

the first Chern class of the manifold. Therefore, a necessary condition for the existence

of KE metric is that the first Chern class of the manifold has a sign.

The study of KE metrics has a long history. In the cases where the first Chern class

is zero or negative, the uniqueness of the KE metric was proved by Calabi in the 1950s,

and the existence of such a metric was obtained in 1978 by Yau [61] (see also Aubin [1]).

However, when the first Chern class is positive (i.e., for Fano manifolds), the situation

is much more complicated. It turns out that there are obstructions to the existence of

KE metrics on Fano manifolds. The first obstruction was found by Matsushima [41]

in 1957, which says that the automorphism group of a KE Fano manifold must be

reductive. In 1983 another obstruction was found by Futaki in [31], where he defined

an holomorphic invariant (which we now call Futaki invariant) and it was shown that

the Futaki invariant must vanish if the Fano manifold admits a KE metric. In 1985,

Bando-Mabuchi [9] showed that, if any, the KE metric on a Fano manifold is unique up

to biholomorphic automorphisms.

So it is natural to ask, when does a Fano manifold admit a KE metric? Regarding

this problem, many significant results were obtained in history. For instance, in 1990,

Tian [53] completely solved the existence problem for Fano surfaces and showed that

the existence of KE metrics is equivalent to the reductivity of the automorphism groups

of Fano surfaces; in 2004, Xujia Wang and Xiaohua Zhu [60] showed that there always

exist Kähler-Ricci solitons on toric Fano manifolds and the soliton metric is KE if and

only if the Futaki invaraint vanishes.

For general Fano manifolds, the existence of KE metrics is more difficult to char-

acterize. In 1992, Ding-Tian [22] defined a generalized Futaki invariant for a defor-

mation family of Fano manifolds, and based on this, in 1997, Tian [55] introduced

1
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an algebro-geometric notion called K-stability. This notion was later reformulated by

Donaldson [23] using more algebraic language. And the famous Yau–Tian–Donaldson

conjecture says that, the existence of KE metrics on Fano manifolds is equivalent to

K-stability. This conjecture was recently solved by Tian [58] and Chen-Donaldson-

Sun [17] independently in 2012.(For the precise definition of K-stability, we refer the

reader to [5, 23,55].)

1.2 α-invaraint and δ-invariant

However, given a general Fano manifold, it is very difficult to test its K-stability

and hence the existence of KE metric is not easy to determine. So it is an important

problem to find a computable criterion that one can use to determine if the manifold

admits a KE metric or not. In history, the first effective criterion was found in 1987 by

Tian [52], which is known as the α-invariant.

Theorem 1.1 ( [52]). Let X be a Fano manifold. Suppose that α(X) > dim(X)
dim(X)+1

. Then

X admits a Kähler-Einstein metric.

Note that many examples of KE manifolds have been found with the help of α-

invariant. Here, α(X) can be defined by

α
(
X
)

= sup

λ ∈ Q

∣∣∣∣∣the log pair (X,λD) is log canonical

for every effective Q-divisor D ∼Q −KX

 .

Roughly speaking, α(X) measures the singularities of all the divisors in the pluri-

anticanonical system. (See Section 2.4 for more details.) But as one can see, Theorem

1.1 only gives a sufficient condition for the existence of KE metrics and the condition

α(X) > dim(X)
dim(X)+1

turns out to be rather restrictive.

For instance, when X is a smooth cubic surface (which is a two-dimensional Fano

manifold), it is possible that α(X) = 2
3

(cf. Example 2.23), so Theorem 1.1 fails to

work in this case. However Tian [53] still managed to show the existence of KE metrics

on cubic surfaces by modifying α-invariants and using hard core analysis. In Tian’s

argument, the singularities of pluri-anticaonical divisors play an essential role. So in his

1990 survey [54] (page 590), Tian wrote down the following expectation:

The author believes that the existence of Kähler-Einstein metric with positive scalar

curvature should be closely related to the geometry of pluri-anticaonical divisors.

2
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Recently, this expectation has been realized with the help of a new invariant in-

troduced by Fujita-Odaka [26] in 2016, which we now describe. For a sufficiently

large integer k, consider a basis s1, · · · , sdk of the vector space H0(OX(−kKX)), where

dk = h0(OX(−kKX)). For this basis, consider Q-divisor

1

kdk

dk∑
i=1

{
si = 0

}
∼Q −KX .

Any Q-divisor obtained in this way is called a k-basis type (anticanonical) divisor. Let

δk
(
X
)

= sup

λ ∈ Q

∣∣∣∣∣the log pair (X,λD) is log canonical

for every k-basis type Q-divisor D ∼Q −KX

 .

Then let

δ(X) = lim sup
k∈N

δk(X).

So roughly speaking, δ(X) measures the singularities of basis type anti-canonical

divisors. Then Tian’s expectation can now be stated more rigorously using the following

recent result obtained by Blum-Jonsson [4] in 2017.

Theorem 1.2 ( [4, Theorem B]). The following assertions hold:

1. X is K-semistable if and only if δ(X) > 1;

2. X is uniformly K-stable if and only if δ(X) > 1.

Namely, δ-invariant serves as a criterion for the existence of KE metrics.

This result also has a natural extension to the log Fano setting. To be more precise,

let (X,∆) be a log Fano pair (i.e. (X,∆) is a klt pair and −KX −∆ is ample), then we

can define log K-stability for this pair. And by the solution of YTD conjecture [17, 58]

(see also the recent work of Tian-Wang [59]), we know that the geometric interpretation

of the log K-stability is the existence of Kähler-Einstein edge metrics. (The Kähler-

Einstein edge metric is a smooth KE metric on X\∆ but with edge singularities along

the divisor ∆.) Meanwhile, one can also define a log δ-invariant δ(X,∆) for the log pair

(X,∆) (cf. Definition 3.8). Then relying on the work of Blum-Jonsson [4], Codogni-

Patakfalvi [18] showed the following in 2018.

Theorem 1.3. ( [18, Corollary 4.8]) One has

1. (X,∆) is log K-semistable if and only if δ(X,∆) > 1;

3
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2. (X,∆) is uniformly log K-stable if and only if δ(X,∆) > 1.

In other words, the log δ-invariant can be used as a criterion for the existence of

Kähler-Einstein edge metrics.

1.3 Our main results

In this thesis we will discuss several aspects of the δ-invariant. Our first purpose

is to generalize Theorem 1.2 to the case of δ(X) < 1. More precisely, we prove the

following.

Theorem 1.4 ( [12]). Let X be a Fano manifold. let β(X) denote the greatest Ricci

lower bound of X. Then we have β(X) = min{δ(X), 1}.

To prove this result, we will approximate β(X) by a sequence of Kähler-Einstein

edge metrics and it turns out that the corresponding log δ-invaraints of this sequence

will converge to δ(X). Note that Theorem 1.4 can be thought of a special version of the

Yau-Tian-Donaldson correspondence for twisted KE metrics.

We will also give an effective method to estimate δ-invariant on complex surface.

Note that the computation of δ-invaraint is much harder than that of α-invariant. For

α-invariant, one can use various tools from birational geometry to estimate the log

canonical thresholds of divisors. For instance, the α-invariants of Fano surfaces have

been explicitly computed by Cheltsov [11], and for Fano threefolds, this is also well

studied in the work of Cheltsov-Shramov [13].

However, to calculate δ-invariant, so far there are very few tools. But still, there

have been some important progress in this area. In [43], Park and Won estimated

the δ-invariants of all smooth Fano surfaces using deep analysis of Newton-polygons.

Their work gives a purely algebraic proof of Tian’s work [53], but it seems that their

method cannot be easily generalized to higher dimensions. For toric varieties, Blum-

Jonsson [4] showed that the δ-invaraint can be completely determined by the barycenter

of the corresponding polytope. However, their method is not likely to work for non-toric

varieties.

So in this thesis we present an alternative and more geometric approach to estimat-

ing the δ-invariant. We will mainly work on complex surfaces, since this is already quite

4
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difficult. The main ingredient of our approach is the volume estimates for basis type

divisors on surfaces (cf. Theorem 2.12), which can control the multiplicities of divisors

locally and hence allows us to estimate the corresponding log canonical thresholds. In

particular, we prove

Theorem 1.5 ( [16]). Let S be a smooth cubic surface in P3. Then δ(S) > 6
5
.

Note that this is a joint work with Ivan Cheltsov and it gives a new algebraic proof

for the K-stability of smooth cubic surfaces. Moreover, our bound for δ(S) is better

than the one obtained by Park-Won [43] We hope that out methods can be generalized

to higher dimensions in future research.

Motivated by a conjecture of Cheltsov-Rubinstein [14], we will also investigate a

special family of log Fano surfaces (S, (1 − β)C) (see section 5.1 for detailed definition

of the family). In [14], this family is conjectured to admit Kähler-Einstein edge metrics,

but it seems to the author that there is no easy analytic proof for this. So we attack

this problem from the algebraic side. Namely we will try to show that this family is

log K-stable by estimating the log δ-invariants. But it turns out that the boundary

term (1 − β)C causes new troubles. To overcome this, we will prove several new local

intersection inequalities in Section 2.3, which allows us to estimate the log canonical

thresholds effectively even with the appearance of the boundary term (1 − β)C, and

thanks to which, we are able to prove the following.

Theorem 1.6 ( [12]). One has δ(S, (1− β)C) > 1 for sufficiently small β.

This is a joint work with Ivan Cheltsov and Yanir Rubinstein and it gives a whole

new family of log K-stable surfaces. This partially verifies the conjecture of Cheltsov-

Rubinstein [14].

The rest of this thesis is organized as follows. In Chapter 2, we collect some algebraic

tools that will be useful for us. Several new local intersection inequalities are proved

in Section 2.3, which will play significant roles in our computation of δ-invariants on

complex surfaces. In Chapter 3 we will discuss the properties of α- and δ-invaraints

with more detail and Theorem 1.4 will be proved in Section 3.2. In Chapter 4, we prove

Theorem 1.5. In Chapter 5 we prove Theorem 1.6.

5
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Chapter 2 Preliminaries

Chapter 2 Preliminaries

This chapter serves as a quick tour guide for various algebraic notions that will be

used in this thesis. Moreover we will develop some new intersection formulae, which will

play crucial roles in Chapter 4 and 5.

2.1 Canonical singularities in birational geometry

In this section we recall some basic terminologies for canonical singularities appear-

ing in birational geometry. All varieties here are assumed to be normal over C.

Given a proper birational morphism π : Y → X, we define the exceptional set of

π to be the smallest subset exc(π) ⊂ Y , such that π : Y \exc(π) → X\π(exc(π)) is an

isomorphism.

A log resolution of (X,∆) is a proper birational morphism π : Y → X such that

π−1(∆)∪{exc(π)} is divisor with simple normal crossing (snc) support. Log resolutions

exist for all the pairs we will consider in this article, by Hironaka’s theorem.

Assume that KX + ∆ is a Q-Cartier divisor. Given a log resolution of (X,∆), write

π?(KX + ∆) = KY + ∆̃ +
∑

eiEi,

where ∆̃ denotes the proper transform of ∆, and where exc(π) = ∪Ei, and Ei are

irreducible codimension one subvarieties. Also, assume ∆ =
∑
δi∆i, with ∆i irreducible

codimension one subvarieties, so ∆̃ =
∑
δi∆̃i. Singularities of pairs can be measured as

follows.

Definition 2.1. Let Z ⊂ X be a subvariety. A pair (X,∆) has at most log canonical

(lc) singularities (or klt singularities, respectively) along Z if ei, δj ≤ 1 for every i (or

if ei, δj < 1 for every i, respectively) such that π(Ei) ∩ Z 6= ∅ and every j such that

∆j ∩ Z 6= ∅.

On a normal variety, an effective Q-divisor D is a formal linear combination with

coefficients in Q+ of prime divisors. Thus, given such a D and a prime divisor F , one

has D = aF + ∆, for some a ∈ Q+ and ∆ is an effective Q-divisor with F 6⊂ supp∆.

7
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The number a is called the vanishing order of D along F , denoted

ordFD.

2.2 A tool box for complex surfaces

In this chapter, we collect some standard tools that will be useful for us to estimate

δ-invariant on complex surfaces (cf. Chapter 4 and 5).

Definition 2.2. Let D be an effective divisor on S. Suppose that f is the local defining

equation of D around the point P , then the multiplicity of D at P , is defined to be the

vanishing order of f at P , which we denote by multP (D).

Remark 2.3. Let π : S̃ → S be the blow up of the point P , and let E be the exceptional

curve of π. Denote by D̃ the proper transform of D via π. Then we have

π∗(D) = D̃ + multP (D) · E.

Definition 2.4. Let C1 and C2 be two irreducible curves on a surface S. Suppose that

C1 and C2 intersect at P . Let OP be the local ring of germs of holomorphic functions

defined in some neighborhood of P . Then the local intersection number of C1 and C2 at

the point P is defined by

(
C1 · C2

)
P

:= dimCOP/(f1, f2),

where f1 and f2 are local defining functions of C1 and C2 around the point p. The global

intersection number C1 · C2 is defined by

C1 · C2 :=
∑

P∈C1∩C2

(
C1 · C2

)
P
.

Note that C1 · C2 only depends on the numerical classes of C1 and C2.

The above two definitions extends to R-divisors by linearity. For instance, say

we have a curve C and a R-divisor ∆ meeting at the point p. We decompose ∆ as

∆ =
∑

i aiZi, where Zi’s are distinct prime divisors and ai ∈ R. Then,

(
C ·∆

)
P

:=
∑
i

ai
(
C · Zi

)
P
,

8
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where (C.Zi)P = 0 if Zi does not pass through the point P .

In the following, let D be an effective R-divisor on S. We will investigate the

canonical singularity of the log pair (S,D) at the point P in terms of multP (·) and
(
·
)
P

.

Lemma 2.5 ( [33]). If (S,D) is not log canonical at P , then multP (D) > 1.

Let C be an irreducible curve on S. Write

D = aC + ∆,

where a is a non-negative real number that is also denoted as ordC(D), and ∆ is an

effective R-divisor on S whose support does not contain the curve C.

Lemma 2.6 ( [12, Proposition 3.3]). Suppose that a 6 1, the curve C is smooth at the

point P , and multP (∆) 6 1. If (S,D) is not log canonical at P , then

(
C ·∆

)
P
> 2− a.

We will give the proof of this lemma in the next section. The following is often

referred to as the inversion of adjunction on surfaces.

Corollary 2.7. (Inversion of adjunction) If a 6 1, the curve C is smooth at P , and the

log pair (S,D) is not log canonical at P , then

(
C ·∆

)
P
> 1.

Let π : S̃ → S be the blow up of the point P , and let E1 be the exceptional curve

of π. Denote by D̃ the proper transform of D via π. Then

KS̃ + D̃ +
(
multP (D)− 1

)
E1 ∼R π

∗(KS +D
)
.

This implies

Corollary 2.8. The log pair (S,D) is log canonical at P if and only if the log pair

(
S̃, D̃ +

(
multP (D)− 1

)
E1

)
is log canonical along the curve E1.

9
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Thus, using Lemma 2.5 and Corollary 2.8, we obtain the following simple criterion.

Corollary 2.9. Suppose that

multQ
(
π∗(D)

)
= multP

(
D
)

+ multQ
(
D̃
)
6 2

for every point Q ∈ E1. Then (S,D) is log canonical at P .

If D is a Cartier divisor, then its volume is the number

vol(D) = lim sup
k∈N

h0(OS(kD)

k2/2!
,

where the lim sup can be replaced by a limit (see [36, Example 11.4.7]). Likewise, if D

is a Q-divisor, we can define its volume using the identity

vol(D) =
vol
(
λD
)

λ2

for an appropriate λ ∈ Q>0. Then the volume vol(D) only depends on the numerical

equivalence class of the divisor D. Moreover, the volume function can be extended by

continuity to R-divisors. Furthermore, it is log-concave:

√
vol(D1 +D2) >

√
vol(D1) +

√
vol(D2). (2.1)

for any pseudoeffective R-divisors D1 and D2 on the surface S. This fact will be used in

our computation in Section 4.1. For more details about volumes of R-divisors, we refer

the reader to [35,36].

If D is not pseudoeffective, then vol(D) = 0. If the divisor D is nef, then

vol(D) = D2.

This follows from the asymptotic Riemann–Roch theorem [36]. If the divisor D is not

nef, its volume can be computed using its Zariski decomposition [2, 27, 45, 62]. Namely,

if D is pseudoeffective, then there exists a nef R-divisor N on the surface S such that

D ∼R N +
r∑
i=1

aiCi,

10
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where each Ci is an irreducible curve on S with N ·Ci = 0, each ai is a non-negative real

number, and the intersection form of the curves C1, . . . , Cr is negative definite. Such

decomposition is unique, and it follows from [3, Corollary 3.2] that

vol
(
D
)

= vol
(
N
)

= N2.

This immediately gives

Corollary 2.10. Let Z1, . . . , Zs be irreducible curves on S such that D ·Zi 6 0 for every

i, and the intersection form of the curves Z1, . . . , Zs is negative definite. Then

vol(D) = vol
(
D −

s∑
i=1

biZi

)
,

where b1, . . . , bs are (uniquely defined) non-negative real numbers such that

(
D −

s∑
i=1

biZi

)
· Zj = 0

for every j.

Corollary 2.11. Let Z be an irreducible curve on S such that Z2 < 0 and D · Z 6 0.

Then

vol(D) = vol
(
D − D · Z

Z2
Z
)
.

Let (S, L) be a polarized surface. Let η : Ŝ → S be a birational morphism (possibly

an identity) such that Ŝ is smooth. Fix a (non necessarily η-exceptional) irreducible

curve F in the surface Ŝ. Let

τ(F ) = sup
{
x ∈ R>0

∣∣∣ η∗(L)− xF is pseudoeffective
}
.

This is called the pseudoeffective threshold of L with respect to F .

Theorem 2.12. Suppose that (S, L) is a polarized surface, and D ∼Q L is a k-basis

type divisor with k � 1. Then

ordF
(
η∗(D)

)
6

1

L2

∫ τ(F )

0

vol
(
η∗L− xF

)
dx+ εk,

where εk is a small constant depending on k such that εk → 0 as k →∞.

11
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Proof: This is a very special case of [26, Lemma 2.2].

The following (simple) result can be very handy.

Lemma 2.13. In the assumptions and notations of Theorem 2.12, one has

∫ τ(F )

µ

vol
(
η∗L− xF

)
dx 6

(
τ(F )− µ

)
vol
(
η∗L− µF

)
for any µ ∈ [0, τ(F )].

Proof: The assertion follows from the fact that vol(η∗L−xF ) is a non-increasing func-

tion on x ∈ [0, τ(F )].

Using (2.1), this result can be improved as follows:

Lemma 2.14. In the assumptions and notations of Theorem 2.12, one has

∫ τ(F )

µ

vol
(
η∗L− xF

)
dx 6

2

3

(
τ(F )− µ

)
vol
(
η∗L− µF

)
for any µ ∈ [0, τ(F )].

Proof: The required assertion follows from the proof of [25, Proposition 2.1].

We will apply both Lemmas 2.13 and 2.14 to estimate the integral in Theorem 2.12

in the cases when it is not easy to compute.

2.3 Some new local inequalities on complex surfaces

Let us first give a proof of Lemma 2.6. The proof actually uses Corollary 2.7 (which

in turn is a simple application of the inversion of adjunction on surfaces).

Proof of Lemma 2.6. We argue by contradiction. Suppose that

(C ·∆)P ≤ 2− a.

Then we get

m := multP (∆) ≤ 2− a.

12
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Let π : S̃ → S be the blowup of the point P and let E be the exceptional curve of π.

Denote by C̃ and ∆̃ the proper transforms of C and ∆ resp. on S̃. Then the log pair

(
S̃, (a+m− 1)E + aC̃ + ∆̃

)
is not log canonical at some point Q ∈ E. We claim that this Q has to be the intersection

point E ∩ C̃. If this is not the case, then the pair

(
S̃, (a+m− 1)E + ∆̃

)
is not log canonical at some point Q ∈ E that is away from C̃. Then Corollary 2.7

applies (as (a+m− 1) ≤ 1) and we obtain

m = E · ∆̃ ≥ (E · ∆̃)Q > 1,

contradicting our assumption that m ≤ 1. So we see that Q = E ∩ C̃. Then applying

Corollary 2.7 to the pair
(
S̃, (a+m− 1)E + aC̃ + ∆̃

)
at Q gives

a− 1 + (C ·∆)P =
(
C̃ · ((a+m− 1)E + ∆̃)

)
Q
> 1,

and hence

(C ·∆)P > 2− a,

contradicting our assumption that (C ·∆)P ≤ 2− a.

We continue with a new local inequality incorporating also an additional “boundary

curve”.

Theorem 2.15. Let S be a surface, let P be a smooth point in S, let Z and C be

two irreducible curves on S that both are smooth at P and intersect transversally at P ,

let a, b ∈ [0, 1) be two non-negative numbers and let Ω be an effective Q-divisor on the

surface whose support does not contain the curves C and Z. Suppose that the log pair

(S, (1 − b)C + aZ + Ω) is not log canonical at P . Put m = multP Ω and suppose that

m ≤ 1. And also assume that we have either a + (Z · Ω)P − b ≤ 1 or a +m ≤ 1. Then

we have m > b and

(C · Ω)P >
m

m− b
(1− a)− b.

13
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Proof: We may assume b > 0 (the case when b = 0 follows readily from 2.7). We will

use an inductive argument.

Let π : S̃ → S be the blowup of the point P and let E be the exceptional curve of

π. Denote by C̃, Z̃ and Ω̃ the proper transforms of C, Z and ∆ resp. on S̃. Put

P̃ := E ∩ C̃, Q̃ = E ∩ Z̃.

By construction, the log pair

(
S̃, (1− b)C̃ + aZ̃ + Ω̃ + (a+m− b)E

)
is not log canonical at some point O ∈ E. Since either a+(Z ·Ω)P − b ≤ 1 or a+m ≤ 1,

it is clear that (a+m− b) ≤ 1.

Fig. 2.1: The blowup of P

We first claim that O = P̃ and m > b. We argue by contradiction. Suppose that O

is away from P̃ . Then we claim that O = Q̃. Indeed, if Q is away from both P̃ and Q̃,

then the log pair
(
S̃, (a+m− b)E + Ω̃

)
is not log canonical at O so we have

m = E · Ω̃ ≥ (E · Ω̃)O > 1,

contradicting the assumption that m ≤ 1. So we must have O = Q̃. Then the log pair(
S̃, aZ̃ + Ω̃ + (a+m− b)E

)
is not log canonical at Q̃. We can apply 2.7 w.s.t. both Z̃

14
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and E to derive

a− b+ (Z · Ω)P =
(
Z̃ · (Ω̃ + (a+m− b)E)

)
Q̃
> 1

and

a+m ≥
(
E · (aZ̃ + Ω̃)

)
Q̃
> 1.

They contradict the assumption that either a + (Z · Ω)P − b ≤ 1 or a + m ≤ 1. So we

must have O = P̃ . Now applying 2.7 to the pair
(
S̃, (1 − b)C̃ + Ω̃ + (a + m − b)E

)
at

P̃ , we obtain

1− b+m ≥
(
E · ((1− b)C̃ + Ω̃)

)
P̃
> 1,

and hence

m > b,

as claimed.

Now we will think of the log pair (S̃, (1− b)C̃ + (a+m− b)E + Ω̃) as our new pair

(as opposed to the original pair (S, (1 − b)C + aZ + Ω)), and we put m̃ := multP̃ (Ω̃).

Let us check whether this new pair satisfies all the conditions of Theorem 2.15.

Suppose that we have both

(a+m− b) + (E · Ω̃)P̃ − b > 1

and

(a+m− b) + m̃ > 1.

Then

(C · Ω)P = m+ (C̃ · Ω̃)P̃ ≥ m+ m̃ > 1− a+ b.

Thus

2 <
(C · Ω)P − (1− a) + b

b
.

Meanwhile, the inequality (a+m− b) + (E · Ω̃)P̃ − b > 1 gives

2 >
1− a
m− b

.

15
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So we derive
(C · Ω)P − (1− a) + b

b
>

1− a
m− b

,

and hence

(C · Ω)P >
m

m− b
(1− a)− b.

Then we are done.

Thus we can assume that either (a+m−b)+(E ·Ω̃)P̃ −b ≤ 1 or (a+m−b)+m̃ ≤ 1.

This forces (a+m− b) < 1 (otherwise our new log pair (S̃, (1− b)C̃+ (a+m− b)E+ Ω̃)

would be log canonical at P̃ ). So the new pair satisfies all the conditions in Theorem

2.15. One can now blow up P̃ and repeat the previous argument for our new pair. But

observe that, the intersection number (C̃ · Ω̃)P̃ , when compared to the corresponding

intersection number (C · Ω)P of the previous pair, strictly decreases by m ≥ b > 0. So

this blowup argument cannot be repeated infinitely times and the conclusion of Theorem

2.15 has to be true at certain stage after repeating the previous argument sufficiently

many times. By induction, we might as well assume that the theorem already holds for

(S̃, (1− b)C̃ + (a+m− b)E + Ω̃). Namely, we have m̃ > b and

(C̃ · Ω̃)P̃ >
m̃

m̃− b
(1− (a+m− b))− b.

Or equivalently,

(C · Ω)P −m >
m̃

m̃− b
(1− (a+m− b))− b.

Using the fact m̃ ≤ m, we derive

(C · Ω)P −m >
m

m− b
(1− (a+m− b))− b,

and hence

(C · Ω)P >
m

m− b
(1− a) = b.

This completes the proof.

Theorem 2.16. Let S be a surface, let p be a smooth point in S, let Z and C be two

irreducible curves on S that both are smooth at p and intersect transversally at p, let b be

a non-negative number such that b ≤ 1, let a be a non-negative number such that a ≤ 1,

and let Ω be an effective Q-divisor on the surface whose support does not contain the

16
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curves C and Z. Suppose that the log pair (S, (1 − b)C + aZ + Ω) is not log canonical

at p. Put m = multpΩ and suppose that m ≤ 1. Then we have

(C · Ω)p >
(Z · Ω)p

(Z · Ω)p − b
(1− a)− b.

Proof: We may assume that b > 0. If we have either a+ (Z ·Ω)p− b ≤ 1 or a+m ≤ 1,

then by Lemma 2.6, it is easy to check that a < 1 and b < 1. So we can apply Theorem

2.15 and the result follows immediately since we have m ≤ (Z · Ω)p.

So we may assume that we have both

a+ (Z · Ω)p − b > 1 and a+m > 1.

Then we get

(C · Ω)p ≥ m > 1− a.

So we have

b < (C · Ω)p − (1− a) + b,

so that

1 <
(C · Ω)p − (1− a) + b

b
.

In the meantime, the inequality a+ (Z · Ω)p − b > 1 gives

1 >
1− a

(Z · Ω)p − b
.

So we get
(C · Ω)p − (1− a) + b

b
>

1− a
(Z · Ω)p − b

,

so that

(C · Ω)p >
(Z · Ω)p

(Z · Ω)p − b
(1− a)− b.

The proof is complete.

The following estimate gives a better bound than the usual inversion of adjunction.

Theorem 2.17. Let S be a surface, let p be a smooth point in S, let C be an irreducible

curve on S that is smooth at p, let b be a non-negative number such that b < 1, and let

Ω be an effective Q-divisor on the surface whose support does not contain the curve C.

17



北京大学博士研究生学位论文

Suppose that the log pair (S, (1 − b)C + Ω) is not log canonical at p. Put m = multpΩ

and suppose that m ≤ 1. Then we have

(C · Ω)p > 1 +
b2 + (1−m)b

m− b
.

Proof: Locally we may pick a general curve Z passing through p such that Z is smooth

at p and it intersects transversally with C. Then we choose a = 0. Notice that now we

can apply Theorem 2.15 to the pair (S, (1− b)C + aZ + Ω). So we get

(C · Ω)p >
m

m− b
− b = 1 +

b2 + (1−m)b

m− b
.

Theorem 2.18. Let S be a surface, let p be a smooth point in S, let Z be an irreducible

curve on S that is smooth at p, let a be a positive number such that a ≤ 1, and let Ω

be an effective Q-divisor on the surface whose support does not contain the curve C.

Suppose that the log pair (S, aZ + Ω) is not log canonical at p. Put m = multpΩ and

suppose that m ≤ 1. Then we have

(Z · Ω)p > 1 +
1− a
m+ a

.

Proof: Locally we may pick a general curve C passing through p such that C is smooth

at p and C intersects transversally with Z at p. Moreover we may assume that

m = (C · Ω)p.

We then choose b = 1 and apply Theorem 2.16. So we get

m >
(Z · Ω)p

(Z · Ω)p − 1
(1− a)− 1.

Then we have

(Z · Ω)p > 1 +
1− a
m+ a

.

18
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2.4 Tian’s alpha invariant

As we mentioned in the Introduction 1, Tian’s α-invariant plays an important role

in the study of Kähler-Einstein problem on Fano manifolds. The purpose of this section

is to give some general properties of the α-invaraint. Let us start with the definition.

Definition 2.19. Let (X,ω) be a compact Kähler manifold. We define

α(X, [ω]) = sup{α > 0 | ∃Cα > 0 s.t.

∫
X

e−α(φ−supX φ)ωn ≤ Cα, ∀φ ∈ H(X,ω)}.

Tian [52] proved that, for any compact Kähler manifold, such an invariant must be

a positive number. It is direct to check that this invariant only depends on the Kähler

class [ω], so the notation α(X, [ω]) makes sense, which we will call the α-invariant of

(X,ω).

In the following, we will always work with polarized Kähler manifolds, namely, there

is also an ample line bundle L on X and ω ∈ 2πc1(L). In this case, we shall write

α(X,L) := α(X, [ω]).

When L = −KX , we will also write α(X) := α(X,−KX) for simplicity, which will be

called the α-invariant of X. Let us also fix a smooth Hermitian metric h on L.

Definition 2.20 ( [53]). For each m ≥ 1, we define

αm(X,L) = sup{λ > 0 |
∫
X

|s|−2λ/mhm ωn <∞, for ∀s ∈ H0(X,Lm), s 6= 0}

αm(X,L) can be thought of as a finite dimensional quantization of α(X,L), and we

have the following

Theorem 2.21. ( [13], [49]) We have

α(X,L) = inf
m
αm(X,L) = lim

m→+∞
αm(X,L).

From the view of modern algebraic geometry, the quantity αm(X,L) can also be

related to the log canonical threshold of the pair (X,Lm), denoted lctm(X,L). Here

lctm(X,L) := m sup{λ | (X,λD) is log canonical for any effective D ∈ |Lm|}
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And we have the following relation

αm(X,L) = lctm(X,L).

(This can be seen from the fact that the log canonicity of an effective divisor is equivalent

to certain integrability of the local holomorphic defining function of the divisor.) In

particular, Theorem 2.21 gives the following purely algebraic definition of α invariants.

α(X,L) = sup

λ > 0

∣∣∣∣∣the log pair (X,λD) is log canonical

for every effective Q-divisor D ∼Q L

 . (2.2)

This algebraic characterization is easier to work with if one wants to compute the

α-invariant explicitly.

Example 2.22. The α-invariant of the projective plane P2 is

α(P2,−KP2) =
1

3
.

Proof: Note that −KP2 = O(3). So if we pick an arbitrary line L on P2, then

3L ∼ −KP2 .

Since (P2, 3λL) is log canonical if and only if λ ≤ 1/3, we obtain from (2.2) that

α(P2,−KP2) ≤ 1

3
.

To show the equality, we argue by contradiction. Suppose that there exists an effective

Q-divisor D ∼Q −KP2 such that the log pair (P2, 1
3
D) is not log canonical at some point

P ∈ P2. Let us pick a general line L passing through P , which is not contained in the

support of D. Then the log pair (P2, L + 1
3
D) is also not log canonical at P . Applying

Corollary 2.7 to this pair, we derive

1 =
(
O(1)

)2
= L · (1

3
D) ≥

(
L · (1

3
D)
)
P
> 1,

a contradiction.

Example 2.23. Let S be a smooth Fano surfaces (i.e. dimS = 2 and −KS is ample).
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All possible values of α(S,−KS) have been computed in [11].

α(S,−KS) =



1

3
if S ∼= F1 or K2

S ∈ {7, 9},
1

2
if S ∼= P1 × P1 or K2

S ∈ {5, 6},
2

3
if K2

S = 4,

2

3
if S is a cubic surface in P3 with an Eckardt point,

3

4
if S is a cubic surface in P3 without Eckardt points,

3

4
if K2

S = 2 and | −KS| has a tacnodal curve,

5

6
if K2

S = 2 and | −KS| has no tacnodal curves,

5

6
if K2

S = 1 and | −KS| has a cuspidal curve,

1 if K2
S = 1 and | −KS| has no cuspidal curves.
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Chapter 3 Stability thresholds on Fano type

manifolds

3.1 Fujita-Odaka’s invaraint

Let (X,L) be a polarized pair, where X is an n-dimensional projective manifold and

L is an ample line bundle on X. Recently, Fujita-Odaka [26] introduced an δ-invariant

in the study of K-stability of Fano varieties. We begin with a general definition.

Definition 3.1. For any k ≥ 1, we set

dk := dimCH
0(X,Lk) > 0.

For any basis s1, ..., sdk of H0(X, kL), let Di be the divisor cut out by si and we consider

the Q-divisor

D =
1

kdk

dk∑
i=0

Di,

which we call a k-basis type divisor. We set

δk(X,L) := {c > 0| (X, cD) is lc for any k-basis type divisor D}.

And we define the delta invariant by

δ(X,L) := lim sup
k→∞

δk(X,L).

(We remark that the limsup is actually a limit; see [4, Theorem A].) If L = −KX , then

we simply write

δ(X) := δ(X,−KX),

which is called the δ-invariant (or the stability threshold) of X.

It turns out that α(X,L) and δ(X,L) have the following nice relation (cf. [4])

n+ 1

n
α(X,L) ≤ δ(X,L) ≤ (n+ 1)α(X,L). (3.1)
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Both α-invariant and δ-invariant are particularly useful in the Fano setting, i.e.

when L = −KX . In this case, these two invariants are closely related to the existence of

KE metrics and K-stability; see Theorem 1.1 and 1.2. For instance, when α(X) > n
n+1

,

(3.1) implies that δ(X) > 1, so Theorem 1.2 shows that X is uniformly K-stable. On

the other hand, suppose that X is K-semistable, namely δ(X) ≥ 1. Then (3.1) implies

that one must have α(X) ≥ 1
n+1

, i.e. the α-invariant of a K-semistable Fano manifold

cannot be too small.

3.2 Delta invaraint and the greatest Ricci lower bound

Throughout this section, X will be an n-dimensional Fano manifold. The purpose

of this section is to relate the δ-invaraint of X to an analytic quantity called the greatest

Ricci lower bound. We begin with the following definition.

Definition 3.2 ( [46, 47,56]). We define the greatest Ricci lower bound β(X) to be

β(X) := sup{λ > 0 | ∃ ω ∈ 2πc1(X) such that Ric(ω) > λω }.

This invariant was the topic of Tian’s article [56] although it was not explicitly

defined there, but was first explicitly defined by Y. Rubinstein in [46, (32)], [47, Problem

3.1] and was later further studied by Székelyhidi [51], Li [37], Song–Wang [50], and

Cable [10]. Roughly speaking, β(X) measures how far X is from being a Kähler-Einstein

(KE) manifold. So it is always an interesting problem to find the value of β(X) since it

plays an important role in the study of KE problems.

Remark 3.3. The threshold β(X) is also closely related to the alpha invariant α(X).

For instance, we have

β(X) > min
{n+ 1

n
α(X), 1

}
,

which can be derived using the continuity method; see [52] and also [47, Lemma 6.2].

As conjectured by Rubinstein [46, Problem 4.1], both β(X) and δ(X) can be used

to test K-(semi)stability of X (for the definition of K-(semi)stability, we refer the reader

to [5]). And indeed, by the work of many people, we now have the following result.

Theorem 3.4 ( [4, 26,38]). The following are equivalent.

1. X is K-semistable;
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2. β(X) = 1;

3. δ(X) > 1.

The main result of this section is the following

Theorem 3.5. Let X be a Fano manifold. Then we have

β(X) = min{δ(X), 1}.

This result can be thought of as a special version of the YTD correspondence, since

it relates an analytic quantity to an algebraic quantity. Note that this result was first

proved in the toric case by Blum-Jonsson [4, Corollary 7.19]. So it is reasonable to

believe that the same result holds in the general setting. The purpose of this section

is to give a short proof of Theorem 3.5 relying on some recent developments in the

literature. (Note this result has also been proved independently in the recent work [7])

For the purpose of the proof, we generalize the definition of δ-invariant to Q-line

bundles.

Definition 3.6 ( [4, 26]). Let L be an ample Q-line bundle on X. For any sufficiently

large and divisible integer k, we consider a basis s1, · · · sdk of H0(X, kL), where dk =

h0(X, kL). We can associate a Q-divisor D ∼Q L to this basis by

D :=
1

kdk

dk∑
i=1

{si = 0}.

Any D obtained in this way is called a k-basis type divisor of L. We put

δk(L) := sup{c > 0 | (X, cD) is log canonical for any k-basis type divisor D of L}.

Then we define δ(L) by

δ(L) := lim sup
k

δk(L).

To prove Theorem 3.5, one also needs to use Kähler-Einstein edge (KEE) metric

and its corresponding thresholds as well. So we recall the following two definitions.

Definition 3.7 ( [38]). Suppose that ∆ ∈ | −mKX | is a smooth divisor, where m is a

positive integer. We define

β(X,∆/m) := sup{λ > 0 | ∃ KEE metric ω ∈ 2πc1(X) s.t. Ric(ω) = λω+2π(1−λ)[∆]/m }
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Definition 3.8 ( [18]). Suppose that ∆ ∈ | −mKX | is a smooth divisor, where m is a

positive integer. Let λ ∈ (0, 1] be a rational number. Then −KX − 1−λ
m

∆ ∼Q −λKX is

an ample Q-line bundle. We define

δk(X,
1− λ
m

∆) := sup

c > 0

∣∣∣∣∣the log pair

(
X,

1− λ
m

∆ + cD

)
is log canonical

for any k-basis type divisor D of − λKX

 .

Moreover, we define

δ(X,
1− λ
m

∆) := lim sup
k

δk(X,
1− λ
m

∆),

which is called the δ-invariant of the log Fano pair (X, 1−λ
m

∆).

For more information about KE and KEE metrics, we refer to [48]. Note that, by

Bertini’s theorem, for m� 1, any general divisor ∆ ∈ | −mKX | is smooth.

Remark 3.9. β(X) and β(X,∆/m) can be related as follows:

β(X)
m− 1

m− β(X)
6 β(X,∆/m) 6 β(X). (3.2)

See [50] for a proof (see also [38]). In particular, lim β(X,∆/m) = β(X).

The thresholds β(X,∆/m) and δ(X, 1−λ
m

∆) are the counterparts of β(X) and δ(X)

in the log setting. They can be used to test the existence of KEE metrics and log

K-(semi)stability (see e.g. [18,40]).

If follows immediately from the definition that

δ(−λKX) > δ(X,
1− λ
m

∆). (3.3)

With a little more effort, one can actually prove the following

Lemma 3.10. Fix a rational number λ ∈ (0, 1]. For each m� 1 pick a smooth divisor

∆ ∈ | −mKX | and put Bm := 1−λ
m

∆. Then we have

lim
m→∞

δ(X,Bm) = δ(−λKX).

Proof: Fix any small ε > 0. If suffices to show that, for any m � 1 and sufficiently
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divisible k � 1, we have

δk(−λKX) > δk(X,Bm) > (1− ε)δk(−λKX).

The first inequality δk(−λKX) > δk(X,Bm) follows immediately from Definition 3.6 and

Definition 3.8. So it remains to prove the second inequality. For this purpose, we let D

be any k-basis type divisor of −λKX . Pick any c > 0 such that the log pair (X, cD)

is log canonical. If then suffices to show that the log pair (X,Bm + (1 − ε)cD) is log

canonical as well.

Now notice that, the log pair (X,∆) is log canonical since ∆ ∈ | − mKX | is a

smooth divisor. Then we can apply a trick from [11] to show the log canonicity of

(X,Bm + (1− ε)cD). Indeed, suppose that the log pair (X,Bm + (1− ε)cD) is not log

canonical, then [11, Remark 2.1] implies that the log pair (X, (1−ε)c
1−(1−λ)/mD) is not log

canonical as well. If we pick m > 1−λ
ε

, the log pair (X, cD) is then not log canonical,

contradicting our choice of c.

Now we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. Using Theorem 3.4, it is enough to assume that X is not K-

semistable. So β(X) ∈ (0, 1). Our goal is to show that δ(X) = β(X). For simplicity we

may also assume that β(X) ∈ Q. Then we consider the ample Q-line bundle −β(X)KX .

By Definition 3.6, it suffices to show that

δ(−β(X)KX) = 1.

First, we show that δ(−β(X)KX) > 1. For this purpose, we pick any rational

number λ ∈ (0, β(X)). Then let m be a sufficiently large integer and pick a smooth

divisor ∆ ∈ | −mKX |. By (3.2), we may assume that

λ < β(X,∆/m).

Then by Definition 3.7 and [40, Theorem 1.1], we can find a KEE metric ω ∈ 2πc1(X)

such that

Ric(ω) = λω + 2π(1− λ)[∆]/m.

So the log pair (X, λ−1
m

∆) is log K-semistable (see [40, Corollary 1.12]). Thus by [18,
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Corollary 4.8], we have

δ(X,
λ− 1

m
∆) > 1.

Hence by (3.3), we have δ(−λKX) > 1. Letting λ→ β(X), we get

δ(−β(X)KX) > 1.

So it remains to show that δ(−β(X)KX) 6 1. We argue by contradiction. Suppose

that δ(−β(X)KX) > 1. Then we may pick a sufficiently small rational number ε > 0

such that β(X) + ε 6 1 (recall that β(X) < 1) and

δ
(
− (β(X) + ε)KX

)
> 1.

Then Lemma 3.10 implies that, for any m� 1 and any smooth divisor ∆ ∈ | −mKX |,
we have

δ(X,
1− (β(X) + ε)

m
∆) > 1.

Then by [8, Corollary 2.11], the log pair
(
X, 1−(β(X)+ε)

m
∆
)

is uniformly log K-stable. So

it follows from [17, 58] (see also [59]) that, there exists a KEE metric associated to this

pair. Thus we have β(X,∆/m) > β(X) + ε, contradicting (3.2).

Remark 3.11. In the above argument, to prove δ(−β(X)KX) 6 1, one can also argue as

follows. Suppose that δ(−β(X)KX) > 1. Then we may pick a sufficiently small rational

number ε > 0 such that β(X) + ε 6 1 and δ
(
− (β(X) + ε)KX

)
> 1. Then it follows

from [8, Corollary 2.11] that, the polarized pair
(
X,−(β(X) + ε)KX

)
is K-semistable in

the adjoint sense, hence twisted K-semistable in the sense of [21] (see [5, Proposition

8.2]). So [20, Proposition 10] guarantees that, for some λ ∈ (β(X), β(X) + ε), we can

find two Kähler forms ω,α ∈ 2πc1(X) such that

Ric(ω) = λω + (1− λ)α,

which also gives us a contradiction.

Now we show that, Theorem 3.5 has the following consequence.

Theorem 3.12. Let X and Y be two smooth Fano manifolds. Then we have

β(X × Y ) = min{β(X), β(Y )}.
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Note that this can be proved using analytic methods as well, since β(X) corresponds

to the maximal existence time of the solution to the continuity method (cf. [51]). But

here we present a short algebraic proof with the help of the δ-invaraint.

Proof: By definition 3.2, it is clear that

β(X × Y ) ≥ min{β(X), β(Y )}.

If β(X) = β(Y ) = 1, then we must have β(X × Y ) = 1, so we are done. Thus we may

assume that β(X) ≤ β(Y ) and that β(X) < 1. So in particular, β(X) = δ(X) (recall

Theorem 3.5).

On the other hand, by Definition 3.6, it is easy to check that

δ(X × Y ) ≤ min{δ(X), δ(Y )}.

Now using Theorem 3.5 we derive

β(X × Y ) = δ(X × Y ) ≤ min{δ(X), δ(Y )} = min{β(X), β(Y )}.

This completes the proof.

Remark 3.13. For α-invariant, it was known that ( [13, Lemma 2.29])

α(X × Y ) = min{α(X), α(Y )}

For δ-invariant, Park-Won conjectured that ( [43, Conjecture 1.11])

δ(X × Y ) = min{δ(X), δ(Y )}.

Our Theorem 3.12 shows that this is indeed true if δ(X) or δ(Y ) is no bigger than one.

The author was recently informed that this conjecture has now been fully resolved by

Ziquan Zhuang [63].
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3.3 Analytic delta invariant

Let X be a smooth Fano variety of dimension n. Suppose that ω ∈ 2πc1(X) is a

Kähler metric. We put

H(X,ω) = {φ ∈ C∞(X,R) | ωφ = ω +
√
−1∂∂̄φ > 0}.

This is called the space of Kähler potentials of (X,ω).

Let us introduce several useful functionals on H(X,ω). Put V =
∫
X
ωn.

The I-functional Iω(·) is defined by

Iω(φ) :=
1

V

n−1∑
i=0

∫
X

√
−1∂φ ∧ ∂̄φ ∧ ωi ∧ ωn−1−iφ ;

The J-functional Jω(·) is defined by

Jω(φ) :=
1

V

n−1∑
i=0

i+ 1

n+ 1

∫
X

√
−1∂φ ∧ ∂̄φ ∧ ωi ∧ ωn−1−iφ ;

The Mabuchi K-energy Mω(·) is defined by

Mω(φ) :=
1

V

∫
X

log
ωnφ
ωn
ωnφ +

1

V

∫
X

hω(ω − ωnφ)− (Iω − Jω)(φ).

These functionals are important in the study of canonical metrics and they are used

to derive a priori estimates for potential functions along the continuity method (or along

the Kähler-Ricci flow). We refer to the survey [48] for more details.

We recall that, in [51], the greatest Ricci lower bound β(X) is related to certain

properness of the K-energy. Inspired by this and by Theorem 3.5, we introduce an

analytic delta invariant.

Definition 3.14. The analytic delta invariant δ̃(X) is defined by

δ̃(X) := sup{δ > 0 | ∃Cδ > 0 s.t.Mω ≥ (δ − 1)(Iω − Jω)− Cδ}.

The Mabuchi K-energy is said to be proper if δ̃(X) > 1, in which case, one can

derive uniform C0 estimate along the continuity method (or along the Kähler-Ricci flow)

to show the existence of KE metrics. In some sense, the converse is also true.
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Theorem 3.15. [44,55] Suppose that X does not admit non-trivial holomorphic vector

field. Then X admits a KE metric if and only if δ̃(X) > 1.

This can be thought of as an analytic version of the YTD correspondence.

We conjecture that δ̃(X) = δ(X). When δ̃(X) ≤ 1, this is indeed true, since

both δ̃(X) and δ(X) coincide with the greatest Ricci lower bound β(X) (cf. Theorem

3.5 and [51]). Moreover we remark that, in the recent work [8], it was proved that

δ(X) ≥ δ̃(X) using non-Archimedean approach. It seems to the author that the reverse

direction is still missing.
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Chapter 4 Delta invariants on smooth cubic surfaces

Chapter 4 Delta invariants on smooth cubic

surfaces

In [43], Park and Won estimated δ-invariants of all smooth del Pezzo surfaces, which

gives a purely algebraic proof of Tian’s work [53] when combined with Theorem 1.2. In

this chapter, we give an alternative and more geometric approach to the same problem.

For simplicity we only focus on smooth cubic surfaces, since this is the hardest case in

to deal with in [53].

Our main result is the following

Theorem 4.1. Let S be a smooth cubic surface in P3. Then δ(S) > 6
5
.

So Theorem 1.2 immediately gives

Corollary 4.2 ( [43, 53]). All smooth cubic surfaces in P3 are uniformly K-stable.

For a smooth cubic surface S, it was proved in [43, Theorem 4.9] that

δ(S) >
36

31
.

The proof of Theorem 4.1 is completely different from the proof of [43, Theorem 4.9].

Moreover, our bound δ(S) > 6
5

is slightly better.

4.1 Multiplicity estimates

Let S be a smooth cubic surface in P3, and let D be a k-basis type divisor with

k � 1. The goal of this section is to bound multiplicities of the divisor D using Theorem

2.12. As in Theorem 2.12, we denote by εk a small number such that εk → 0 as k →∞.

Lemma 4.3. Let L be a line on S. Then

ordL(D) 6
5

9
+ εk.

Proof: Let us use assumptions and notations of Theorem 2.12 with η = IdS and F = L.

Let H be a general hyperplane section of the surface S that contains L. Then H = L+C,
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where C is an irreducible conic. Since C2 = 0, we have τ(F ) = 1, so that

ordL(D) 6
1

3

∫ 1

0

vol(−KS − xL)dx+ εk =
1

3

∫ 1

0

(−KS − xL)2dx+ εk =
5

9
+ εk

by Theorem 2.12.

Fix a point P ∈ S. Let π : S̃ → S be the blowup of this point. Denote by E1 the

exceptional divisor of π. Fix a point Q ∈ E1. Let σ : Ŝ → S̃ be the blowup of this point.

Denote by E2 the exceptional curve of σ. Let η = π ◦ σ and F = E2. Let

τ(E2) = sup
{
x ∈ R>0

∣∣∣ η∗(−KS)− xF is pseudoeffective
}
.

Applying Theorem 2.12, we get

multQ
(
π∗(D)

)
6

1

3

∫ τ(E2)

0

vol
(
η∗(−KS)− xE2

)
dx+ εk. (4.1)

Let TP be the unique hyperplane section of the surface S that is singular at the

point P . Then we have the following four possibilities:

• TP = L1 + L2 + L3, where L1, L2 and L3 are lines such that P = L1 ∩ L2 ∩ L3;

• TP = L1 + L2 + L3, where L1, L2 and L3 are lines such that L3 63 P = L1 ∩ L2;

• TP = L+ C, where L is a line and C is a conic such that P ∈ C ∩ L.

• TP is an irreducible cubic curve.

We plan to bound the integral in (4.1) depending on the type of the curve TP and on

the position of the point Q ∈ E1. First, we deal with the cases when Q is contained in

the proper transform of the curve TP . We start with

Lemma 4.4. Suppose that TP = L1 + L2 + L3, where L1, L2 and L3 are lines passing

through P . Let L̃1, L̃2 and L̃3 be the proper transforms on S̃ of the lines L1, L2 and L3,

respectively. Suppose that Q ∈ L̃1 ∩ L̃2 ∩ L̃3. Then

multQ
(
π∗(D)

)
6

17

9
+ εk.

Proof: We may assume that Q = L̃1 ∩ E1. Denote by L̂1, L̂2, L̂3 and Ê1 the proper

transforms on Ŝ of the curves L̃1, L̃2, L̃3 and E1, respectively. Then the intersection
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form of the curves L̂1, L̂2, L̂3 and Ê1 is negative definite. Moreover, we have

η∗(−KS) ∼Q L̂1 + L̂2 + L̂3 + 3Ê1 + 4E2.

Thus, we conclude that τ(E2) = 4. Now, using Corollary 2.10, we compute

vol
(
η∗(−KS)− xE2

)
=


3− x2

2
, 0 6 x 6 1,

20−4x−x2
6

, 1 6 x 6 2,

(4−x)2
3

, 2 6 x 6 4.

Then the required result follows from (4.1).

Lemma 4.5. Suppose that TP = L1 +L2 +L3, where L1, L2 and L3 are lines such that

P = L1 ∩ L2 and P /∈ L3. Let L̃1 and L̃2 be the proper transforms on S̃ of the lines L1

and L2, respectively. Suppose that Q = L̃1 ∩ E1 or L̃2 ∩ E1. Then

multQ
(
π∗(D)

)
6

49

27
+ εk.

Proof: Denote by L̂1, L̂2, L̂3 and Ê1 the proper transforms on Ŝ of the curves L1, L2,

L3 and E1, respectively. Then

η∗(−KS) ∼Q L̂1 + L̂2 + L̂3 + 2Ê1 + 3E2.

Since the intersection form of the curves L̂1, L̂2, L̂3 and Ê1 is semi-negative definite, we

conclude that τ(E2) = 3. Then, using Corollary 2.10, we get

vol
(
η∗(−KS)− xE2

)
=


3− x2

2
, 0 6 x 6 1,

20−4x−x2
6

, 1 6 x 6 2,

12−4x
3

, 2 6 x 6 3.

Then the required result follows from (4.1).

Lemma 4.6. Suppose that TP = L + C, where L is a line, and C is an irreducible

conic. Suppose that L and C meet transversally at P . Denote by L̃ and C̃ the proper
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transforms on S̃ of the curves L and C, respectively. Suppose that Q = L̃ ∩ E1. Then

multQ
(
π∗(D)

)
6

9

5
+ εk.

Proof: Denote by L̂, Ĉ and Ê1 the proper transforms on Ŝ of the curves L, C and E1,

respectively. Then

η∗(−KS) ∼Q L̂+ Ĉ + 2Ê1 + 3E2.

Since the intersection form of the curves L̂, Ĉ and Ê1 is negative definite, we conclude

that τ(E2) = 3. Moreover, using Corollary 2.10, we get

vol
(
η∗(−KS)− xE2

)
=


3− x2

2
, 0 6 x 6 1,

20−4x−x2
6

, 1 6 x 6 14
5
,

4(3− x)2, 14
5
6 x 6 3.

Now the required assertion follows from (4.1).

Lemma 4.7. Suppose that TP = L + C, where L is a line, and C is an irreducible

conic. Suppose that L and C meet transversally at P . Denote by L̃ and C̃ the proper

transforms on S̃ of the curves L and C, respectively. Suppose that Q = C̃ ∩ E1. Then

multQ
(
π∗(D)

)
6

5

3
+ εk.

Proof: Denote by L̂, Ĉ and Ê1 the proper transforms on Ŝ of the curves L, C and E1,

respectively. Then

η∗(−KS) ∼Q L̂+ Ĉ + 2Ê1 + 3E2.

Since the intersection form of the curves L̂, Ĉ and Ê1 is negative definite, we conclude

that τ(E2) = 3. Moreover, using Corollary 2.10, we get

vol
(
η∗(−KS)− xE2

)
=

3− x2

2
, 0 6 x 6 2,

(3− x)2 2 6 x 6 3.

Now the required assertion follows from (4.1).

Lemma 4.8. Suppose that TP = L+C, where L is a line and C is an irreducible conic.

Suppose that L and C meet tangentially at P . Denote by L̃ and C̃ the proper transforms
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on S̃ of the curves L and C, respectively. Suppose that Q = E1 ∩ L̃ ∩ C̃. Then

multQ
(
π∗(D)

)
6

17

9
+ εk.

Proof: Denote by L̂, Ĉ and Ê1 the proper transforms on Ŝ of the curves L̃, L̃ and E1,

respectively. Then

η∗(−KS) ∼Q L̂+ Ĉ + 2Ê1 + 4E2.

Since the intersection form of the curves L̂, Ĉ and Ê1 is negative definite, we conclude

that τ(E2) = 4. Moreover, using Corollary 2.10, we get

vol
(
η∗(−KS)− xE2

)
=


3− x2

2
, 0 6 x 6 1,

20−4x−x2
6

, 1 6 x 6 2,

(4−x)2
3

, 2 6 x 6 4.

Then the required result follows from (4.1).

Lemma 4.9. Suppose that TP is an irreducible cubic. Let C̃ be the proper transform of

the curve C on the surface S̃. Suppose that Q ∈ C̃. Then

multQ
(
π∗(D)

)
6

5

3
+ εk.

Proof: Denote by Ĉ and Ê1 the proper transforms on Ŝ of the curves C̃ and E1,

respectively. Then

η∗(−KS) ∼Q Ĉ + 2Ê1 + 3E2.

This gives τ(E2) = 3, because the intersection form of the curves Ĉ and Ê1 is negative

definite. Using Corollary 2.10, we get

vol
(
η∗(−KS)− xE2

)
=

3− x2

2
, 0 6 x 6 2,

(3− x)2, 2 6 x 6 3.

Then the required result follows from (4.1).

Now we consider the cases when Q is not contained in the proper transform of the

singular curve TP on the surface S̃. We start with
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Lemma 4.10. Suppose that TP = L1 + L2 + L3, where L1, L2 and L3 are lines passing

through P . Let L̃1, L̃2 and L̃3 be the proper transforms on S̃ of the lines L1, L2 and L3,

respectively. Suppose that Q /∈ L̃1 ∪ L̃2 ∪ L̃3. Then

multQ
(
π∗(D)

)
6

5

3
+ εk.

Proof: Denote by L̂1, L̂2, L̂3 and Ê1 the proper transforms on Ŝ of the curves L̃1, L̃2,

L̃3 and E1, respectively. Then

η∗(−KS) ∼Q L̂1 + L̂2 + L̂3 + 3Ê1 + 3E2.

This gives τ(E2) = 3, because the intersection form of the curves L̂1, L̂2, L̂3 and Ê1 is

negative definite. Using Corollary 2.10, we get

vol
(
η∗(−KS)− xE2

)
=

3− x2

2
, 0 6 x 6 2,

(3− x)2, 2 6 x 6 3.

Then the required result follows from (4.1).

In the remaining cases, the pseudoeffective threshold τ(E2) is not (always) easy to

compute. There is a (birational) reason for this. To explain it, observe that the linear

system | − KS̃| is free from base points and gives a morphism φ : S̃ → P2. Taking its

Stein factorization, we obtain a commutative diagram

S̃
φ

&&
π

��

α // S

β
��

S ρ
// P2

where α is a birational morphism, β is a double cover branched over a (possibly singular)

quartic curve, and ρ is a linear projection from the point P . Here, the surface S is a

(possibly singular) del Pezzo surface of degree 2. Note that the morphism α is biregular

if and only if the curve TP is irreducible. Moreover, if TP is reducible, then α-exceptional

curves are proper transforms of the lines on S that pass through P .

Let ι be the Galois involution of the double cover β. Then its action lifts to S̃.

On the other hand, this action does not always descent to a (biregular) action of the
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surface S. Nevertheless, we can always consider ι as a birational involution of the surface

S. This involution is known as Geiser involution. It is biregular if and only if P is an

Eckardt point of the surface. In this case, the curve E1 is ι-invariant. However, if P

is not an Eckardt point, then ι(E1) is the proper transform of the (unique) irreducible

component of the curve TP that is not a line passing through P . In both cases, there

exists a commutative diagram

S̃
π

��

ν

��
S

ψ
// S ′

where S ′ is a smooth cubic surface in P3, which is isomorphic to the surface S via the

involution τ , the morphism ν is the contraction of the curve ι(E1), and ψ is a birational

map given by the linear subsystem in |−2KS| consisting of all curves having multiplicity

at least 3 at the point P .

Let Q′ = ν(Q) and P ′ = ν(ι(E1)). Denote by T ′Q the unique hyperplane section

of the cubic surface S ′ that is singular at Q′. If P is not an Eckardt point and Q is

not contained in the proper transform of the curve TP , then Q′ 6= P ′. In this case, the

number τ(E2) can be computed using T ′Q. This explains why the remaining cases are

(slightly) more complicated.

Lemma 4.11. Suppose that TP = L1 +L2 +L3, where L1, L2 and L3 are lines such that

P = L1 ∩ L2 and P /∈ L3. Let L̃1, L̃2 and L̃3 be the proper transforms on S̃ of the lines

L1, L2 and L3, respectively. Suppose that Q /∈ L̃1 ∪ L̃2. Then

multQ
(
π∗(D)

)
6

5

3
+ εk.

Proof: Denote by L̂1, L̂2, L̂3 and Ê1 the proper transforms on Ŝ of the curves L1, L2,

L3 and E1, respectively. Then

η∗(−KS) ∼Q L̂1 + L̂2 + L̂3 + 2Ê1 + 2E2,

which implies that τ(E2) 6 2. Using Corollary 2.11, we see that

vol
(
η∗(−KS)− xE2

)
= 3− x2

2
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provided that 0 6 x 6 2. However, we have τ(E2) > 2, because the intersection form of

the curves L̂1, L̂2, L̂3 and Ê1 is not semi-negative definite. This also follows from the

fact that vol(η∗(−KS)− 2E2) > 0.

Recall that ν : S̃ → S ′ is the contraction of the curve L̃3. We let L′1 = ν(L̃1),

L′2 = ν(L̃2) and E ′1 = ν(E1). Then L′1, L
′
2 and E ′1 are coplanar lines on S ′.

Since Q′ ∈ E ′1, the line E ′1 is an irreducible component of the curve T ′Q. Thus, either

T ′Q consists of three lines, or T ′Q is a union of the line E ′1 and an irreducible conic.

Suppose that T ′Q = E ′1+Z ′, where Z ′ is an irreducible conic on S ′. Then Q′ ∈ E ′1∩Z ′

and Z ′ ∼ L′1 + L′2, which implies that the conic Z ′ does not meet the lines L′1 and L′2.

Denote by Ẑ the proper transform of the conic Z ′ on the surface Ŝ. We have

η∗(−KS) ∼Q
1

2

(
Ẑ + L̂1 + L̂2

)
+ 2Ê1 +

5

2
E2.

This implies that τ(E2) = 5
2
, because the intersection form of the curves Ẑ, L̂1, L̂2 and

Ê1 is semi-negative definite. Using this Q-rational equivalence and Corollary 2.10, we

compute

vol
(
η∗(−KS)− xE2

)
=

3− x2

2
, 0 6 x 6 2,

5− 2x, 2 6 x 6 5
2
.

Thus, a direct computation and (4.1) give

multQ
(
π∗(D)

)
6

59

36
+ εk <

5

3
+ εk,

which gives the required assertion.

To complete the proof, we may assume that T ′Q = E ′1 +M ′ +N ′, where M ′ and N ′

are two lines on S ′ such that Q′ = E ′1 ∩M ′. Then M ′ + N ′ ∼ L′1 + L′2, which implies

that the lines M ′ and N ′ do not meet the lines L′1 and L′2. Denote by M̂ and N̂ the

proper transforms on the surface Ŝ of the lines M ′ and N ′, respectively.

Suppose that Q′ is also contained in the line N ′. This simply means that Q′ is an

Eckardt point of the surface S ′. Then

η∗(−KS) ∼Q
1

2

(
M̂ + N̂ + L̂1 + L̂2

)
+ 2Ê1 + 3E2.

This gives τ(E2) > 3. In fact, we have τ(E2) = 3 here, because the intersection form of
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the curves M̂ , N̂ , L̂1, L̂2, Ê1 is negative definite. Using Corollary 2.10, we get

vol
(
η∗(−KS)− xE2

)
=

3− x2

2
, 0 6 x 6 2,

(3− x)2 2 6 x 6 3.

Now, direct computations and (4.1) give the required inequality.

To complete the proof the lemma, we have to consider the case Q′ /∈ N ′. Then

η∗(−KS) ∼Q
1

2

(
M̂ + N̂ + L̂1 + L̂2

)
+ 2Ê1 +

5

2
E2.

In particular, we see that τ(E2) > 5
2
. Using this Q-rational equivalence and Corollary

2.10, we compute

vol
(
η∗(−KS)− xE2

)
=

3− x2

2
, 0 6 x 6 2,

7− 4x+ x2

2
, 2 6 x 6 5

2
.

Thus, in particular, we have τ(E2) >
5
2
, since

vol
(
η∗(−KS)− 5

2
E2

)
=

1

8
.

As in the previous cases, we can find τ(E2) and compute vol(η∗(−KS) − xE2) for

x > 5
2
. However, we can avoid doing this. Namely, note that the divisor Ê1 + 2N̂ + M̂

is nef and (
Ê1 + 2N̂ + M̂

)
·
(
η∗(−KS)− xE2

)
= 6− 2x,

so that τ(E2) 6 3. Therefore, using (4.1) and Lemma 2.13, we see that

multQ
(
π∗(D)

)
6

1

3

∫ τ(E2)

0

vol
(
η∗(−KS)− xE2

)
+ εk =

=
1

3

∫ 5
2

0

vol
(
η∗(−KS)− xE2

)
+

1

3

∫ τ(E2)

5
2

vol
(
η∗(−KS)− xE2

)
+ εk =

=
79

48
+

1

3

∫ τ(E2)

5
2

vol
(
η∗(−KS)−xE2

)
+εk 6

79

48
+
τ(E2)− 5

2

3
vol
(
η∗(−KS)− 5

2
E2

)
+εk =

=
79

48
+
τ(E2)− 5

2

24
+ εk 6

79

48
+

1

48
+ εk =

5

3
+ εk.
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This finish the proof of the lemma.

Lemma 4.12. Suppose that TP = L+C, where L is a line and C is an irreducible conic.

Denote by L̃ and C̃ the proper transforms on S̃ of the curves L and C, respectively.

Suppose that Q /∈ L̃ ∪ C̃. Then

multQ(π∗(D)) 6
5

3
+ εk.

Proof: Denote by L̂, Ĉ and Ê1 the proper transforms on Ŝ of the curves L, C̃ and E1,

respectively. Then

η∗(−KS) ∼Q L̂+ Ĉ + 2Ê1 + 2E2,

so that τ(E2) > 2. Using Corollary 2.11, we see that

vol
(
η∗(−KS)− xE2

)
= 3− x2

2

provided that 0 6 x 6 2. Since vol(η∗(−KS)− 2E2) > 0, we see that τ(E2) > 2.

Recall that ν : S̃ → S ′ is the contraction of the curve C̃. Let L′ = ν(L̃) and

E ′1 = ν(E1). Then L′ is a line and E ′1 is a conic on S ′ such that P ′ ∈ L′ ∩ E ′1.

First, we suppose that T ′Q is irreducible. Denote by T̂Q the proper transform of the

cubic T ′Q on the surface Ŝ. Then T̂Q · Ê1 = 0 and

T̂Q · L̂ = Ê1 · L̂ = 1.

Since L̂2 = Ê2
1 = −2 and T̂ 2

Q = −1, we see that the intersection form of the curves L̂,

T̂Q and Ê1 is negative definite. On the other hand, we have

η∗(−KS) ∼Q
1

2

(
T̂Q + L̂

)
+

3

2
Ê1 +

5

2
E2.

This shows that τ(E2) = 5
2
. Hence, using Corollary 2.10, we get

vol
(
η∗(−KS)− xE2

)
=


3− x2

2
, 0 6 x 6 2,

44−8x−4x2
12

, 2 6 x 6 17
7
,

4(5− 2x)2, 17
7
6 x 6 5

2
.
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Then a direct calculation and (4.1) give

multQ
(
π∗(D)

)
6

103

63
+ εk <

5

3
+ εk.

Now we suppose that T ′Q = `′+Z ′, where `′ is a line, and Z ′ is an irreducible conic.

Denote by ̂̀and Ẑ the proper transforms on Ŝ of the curves `′ and Z ′, respectively. We

get

η∗(−KS) ∼Q
1

2

(̂̀+ Ẑ + L̂
)

+
3

2
Ê1 +

5

2
E2.

which implies that τ(E2) > 5
2
. Using Corollary 2.10, we get

vol
(
η∗(−KS)− xE2

)
=

3− x2

2
, 0 6 x 6 2,

34−16x+x2
6

, 2 6 x 6 5
2
.

In particular, we have

vol
(
η∗(−KS)− 5

2
E2

)
=

1

24
,

which implies that τ(E2) >
5
2
. Observe that the divisor ̂̀+ 2Ẑ + L̂ is nef and

(̂̀+ 2Ẑ + L̂
)
·
(
η∗(−KS)− xE2

)
= 9− 3x,

which implies that τ(E2) 6 3. Thus, using (4.1) and Lemma 2.13, we get

multQ
(
π∗(D)

)
6

1

3

∫ τ(E2)

0

vol
(
η∗(−KS)− xE2

)
+ εk =

=
1

3

∫ 5
2

0

vol
(
η∗(−KS)− xE2

)
+

1

3

∫ τ(E2)

5
2

vol
(
η∗(−KS)− xE2

)
+ εk =

=
709

432
+

1

3

∫ τ(E2)

5
2

vol
(
η∗(−KS)−xE2

)
+εk 6

709

432
+
τ(E2)− 5

2

3
vol
(
η∗(−KS)−5

2
E2

)
+εk =

=
709

432
+
τ(E2)− 5

2

48
+ εk 6

709

432
+

1

96
+ εk =

89

54
+ εk <

5

3
+ εk.

To complete the proof of the lemma, we may assume that T ′Q = `′+M ′+N ′, where

`′, M ′ and N ′ are lines such that Q′ ∈M ′ ∩N ′. Since E ′1 is a conic passing through Q′,

we conclude that Q′ is not contained in the line `′. Note that `′ 6= L′, and the lines `′,

M ′ and N ′ do not pass through P ′.

Denote by ̂̀, M̂ and N̂ the proper transforms on Ŝ of the lines `′, M ′ and N ′,
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respectively. We get

η∗(−KS) ∼Q
1

2

(̂̀+ M̂ + N̂ + L̂
)

+
3

2
Ê1 +

5

2
E2,

which implies that τ(E2) > 5
2
. In fact, we have τ(E2) >

5
2
, because the intersection form

of the curves ̂̀, M̂ , N̂ , L̂ and Ê1 is not semi-negative definite. Nevertheless, we can use

Corollary 2.10 to compute

vol
(
η∗(−KS)− xE2

)
=

3− x2

2
, 0 6 x 6 2,

92−56x+8x2

12
, 2 6 x 6 5

2
,

so that, in particular, we have

vol
(
η∗(−KS)− 5

2
E2

)
=

1

6
.

Observe that the divisor 2̂̀+ M̂ + N̂ is nef and

(
2̂̀+ M̂ + N̂

)
·
(
η∗(−KS)− xE2

)
= 6− 2x,

which implies that τ(E2) 6 3. Thus, using (4.1) and Lemma 2.14, we get

multQ
(
π∗(D)

)
6

1

3

∫ τ(E2)

0

vol
(
η∗(−KS)− xE2

)
+ εk =

=
1

3

∫ 5
2

0

vol
(
η∗(−KS)− xE2

)
+

1

3

∫ τ(E2)

5
2

vol
(
η∗(−KS)− xE2

)
+ εk =

=
89

54
+

1

3

∫ τ(E2)

5
2

vol
(
η∗(−KS)−xE2

)
+εk 6

89

54
+

2

9

(
τ(E2)−

5

2

)
vol
(
η∗(−KS)−5

2
E2

)
+εk =

=
89

54
+

2

54

(
τ(E2)−

5

2

)
+ εk 6

89

54
+

1

54
+ εk =

5

3
+ εk.

The proof is complete.

Lemma 4.13. Suppose that TP is an irreducible cubic curve. Let C̃ be its proper trans-

form on the surface S̃. Suppose that Q /∈ C̃. Then

multQ
(
π∗(D)

)
6

5

3
+ εk.
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Proof: Denote by Ĉ and Ê1 the proper transforms on Ŝ of the curves C̃ and E1,

respectively. Then

η∗(−KS) ∼Q Ĉ + 2Ê1 + 2E2.

Thus, using Corollary 2.11, we get vol(η∗(−KS)−xE2) = 3− x2

2
provided that 0 6 x 6 2.

Recall that ν : S̃ → S ′ is the contraction of the curve C̃. Let E ′ = ν(E1). Then E ′1

is an irreducible cubic curve that is singular at P ′. Thus, the curve E ′1 is smooth at the

point Q′, so that T ′Q 6= E ′1. One can easily check that T ′Q does not contain P ′.

Suppose that T ′Q is an irreducible cubic. Denote by T̂Q the proper transform of the

curve T ′Q on the surface Ŝ. We get Ê2
1 = −2, T̂ 2

Q = −1, Ê1 · T̂Q = 1 and

η∗(−KS) ∼Q
1

2
T̂Q +

3

2
Ê1 +

5

2
E2,

which implies that τ(E2) = 5
2
. Using Corollary 2.10, we get

vol
(
η∗(−KS)− xE2

)
=

3− x2

2
, 0 6 x 6 12

5
,

3(5− 2x)2, 12
5
6 x 6 5

2
.

Then (4.1) and direct calculations give

multQ
(
π∗(D)

)
6

49

30
+ εk <

5

3
+ εk.

Now we suppose that T ′Q = `′+Z ′, where `′ is a line and Z ′ is an irreducible conic.

Denote by ̂̀ and Ẑ the proper transforms on Ŝ of the curves `′Q and Z ′, respectively.

We get

η∗(−KS) ∼Q
1

2

(̂̀+ Ẑ
)

+
3

2
Ê1 +

5

2
E2.

Since the intersection form of the curves ̂̀, Ẑ and Ê1 is semi-negative definite, we

conclude that τ(E2) = 5
2
. Using Corollary 2.10, we get

vol
(
η∗(−KS)− xE2

)
=

3− x2

2
, 0 6 x 6 2,

5− 2x, 2 6 x 6 5
2
.
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Hence, using (4.1), we see that

multQ
(
π∗(D)

)
6

59

36
+ εk <

5

3
+ εk.

To complete the proof, we may assume that T ′Q = `′ + M ′ + N ′, where `′, M ′ and

N ′ are lines such that Q′ ∈ M ′ ∩N ′. Denote by ̂̀, M̂ and N̂ the proper transforms on

Ŝ of the lines `′, M ′ and N ′, respectively. If Q′ is contained in the line `′, then

η∗(−KS) ∼Q
1

2

(̂̀+ M̂ + N̂
)

+
3

2
Ê1 + 3E2,

and the intersection form of the curves ̂̀, M̂ , N̂ and Ê1 is negative definite, which implies

that τ(E2) = 3. In this case, Corollary 2.10 gives

vol
(
η∗(−KS)− xE2

)
=

3− x2

2
, 0 6 x 6 2,

(3− x)2, 2 6 x 6 3,

which implies the required inequality by (4.1).

To complete the proof, we may assume that Q′ is not contained in `′. Then the

intersection form of the curves ̂̀, M̂ , N̂ and Ê1 is not semi-negative definite. Since

η∗(−KS) ∼Q
1

2

(̂̀+ M̂ + N̂
)

+
3

2
Ê1 +

5

2
E2,

we conclude that τ(E2) >
5
2
. Moreover, using Corollary 2.10, we get

vol
(
η∗(−KS)− xE2

)
=

3− x2

2
, 0 6 x 6 2,

x2−8x+14
2

, 2 6 x 6 5
2
.

In particular, we have

vol
(
η∗(−KS)− 5

2
E2

)
=

1

8
.

Observe that the divisor 2̂̀+ M̂ + N̂ is nef and

(
2̂̀+ M̂ + N̂

)
·
(
η∗(−KS)− xE2

)
= 6− 2x,
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which implies that τ(E2) 6 3. Thus, using (4.1) and Lemma 2.13, we get

multQ
(
π∗(D)

)
6

1

3

∫ τ(E2)

0

vol
(
η∗(−KS)− xE2

)
+ εk =

=
1

3

∫ 5
2

0

vol
(
η∗(−KS)− xE2

)
+

1

3

∫ τ(E2)

5
2

vol
(
η∗(−KS)− xE2

)
+ εk =

=
79

48
+

1

3

∫ τ(E2)

5
2

vol
(
η∗(−KS)−xE2

)
+εk 6

79

48
+
τ(E2)− 5

2

3
vol
(
η∗(−KS)− 5

2
E2

)
+εk =

=
79

48
+
τ(E2)− 5

2

24
+ εk 6

79

48
+

1

48
+ εk =

5

3
+ εk.

This completes the proof of the lemma.

Using Corollary 2.9 and Lemmas 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13,

we immediately get

Corollary 4.14. We have δ(S) > 18
17

.

4.2 Proof of the main result

In this section, we prove Theorem 4.1. Let S be a smooth cubic surface. We have

to prove that δ(S) > 6
5
. Fix a positive rational number λ < 6

5
. Let D be a k-basis type

divisor. To prove Theorem 4.1, it is enough to show that, the log pair (S, λD) is log

canonical for k � 1. Suppose that this is not the case. Then there exists a point P ∈ S
such that (S, λD) is not log canonical at P for k � 1. Let us seek for a contradiction

using results obtained in Section 4.1.

Let π : S̃ → S be the blowup of the point P , and let E1 be the exceptional divisor

of the blow up π. Denote by D̃ the proper transform of D via π. Then

KS̃ + λD̃ +
(
λmultP (D)− 1

)
E1 ∼Q π

∗(KS + λD
)
.

By Corollary 2.8, the log pair (S̃, λD̃+ (λmultP (D)− 1)E1) is not log canonical at some

point Q ∈ E1. Thus, using Lemma 2.5, we see that

multQ
(
π∗
(
D
))

= multP
(
D
)

+ multQ
(
D̃
)
>

2

λ
>

5

3
. (4.2)

Let σ : Ŝ → S̃ be the blowup of the point Q, and let E2 be the exceptional curve of σ.
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Denote by D̂ and Ê1 the proper transforms on Ŝ of the divisors D̃ and E1, respectively.

By Corollary 2.8, the log pair

(
Ŝ, λD̂ +

(
λmultP (D)− 1

)
Ê1 +

(
λmultP (D) + λmultQ(D̃)− 2

)
E2

)
is not log canonical at some point O ∈ E2.

Let TP be the hyperplane section of the surface S that is singular at P . Then TP

must be reducible. This follows from (4.2) and Lemmas 4.9 and 4.13.

Denote by T̃P the proper transform of the curve TP on the surface S̃. Then Q ∈ T̃P .

This follows from (4.2) and Lemmas 4.11 and 4.12.

In the remaining part of this section, we will deal with the following four cases:

1. TP is a union of three lines passing through P ;

2. TP is a union of three lines and only two of them pass through P ;

3. TP is a union of line and a conic that intersect transversally at P ;

4. TP is a union of line and a conic that intersect tangentially at P .

We will treat each of them in a separate subsection. We start with

4.2.1 Case 1

We have TP = L1 + L2 + L3, where L1, L2 and L3 are lines passing through the

point P . We write

λD = a1L1 + a2L2 + a3L3 + Ω,

where a1, a2 and a3 are nonnegative rational numbers, and Ω is an effective Q-divisor

whose support does not contain L1, L2 or L3. Then

L1 · Ω = λ+ a1 − a2 − a3. (4.3)

Denote by L̃1, L̃2 and L̃3 the proper transforms on S̃ of the lines L1, L2 and L3,

respectively. We know that Q ∈ L̃1∪ L̃2∪ L̃3, so that we may assume that Q = L̃1∩E1.

Let Ω̃ be the proper transform of the divisor Ω on the surface S̃, and let m = multP (Ω).

Then the log pair (
S̃, a1L̃1 + Ω̃ +

(
a1 + a2 + a3 +m− 1

)
E1

)
is not log canonical at the point Q.
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By Lemma 4.3, we have

a1 6
(5

9
+ εk

)
λ < 1, (4.4)

where εk is a small constant depending on k such that εk → 0 as k →∞. Thus, applying

Corollary 2.7, we see that

L1 · Ω + a1 + a2 + a3 − 1 = L̃1 ·
(

Ω̃ +
(
a1 + a2 + a3 +m− 1

)
E1

)
> 1,

which gives L1 · Ω > 2− a1 − a2 − a3. Combining this with (4.3), we get

a1 >
2− λ

2
. (4.5)

Let m̃ = multQ(Ω̃). Then by Lemma 4.4, we have

2a1 + a2 + a3 +m+ m̃ 6
(17

9
+ εk

)
λ, (4.6)

where εk is a small constant depending on k such that εk → 0 as k → ∞. Then using

(4.5) and m > m̃, we deduce that

m̃ <
(13

9
+
εk
2

)
λ− 1 < 1. (4.7)

Denote by L̂1 and Ω̂ the proper transforms on Ŝ of the divisors L̃1 and Ω̃, respec-

tively. Then the log pair

(
Ŝ, a1L̂1 + Ω̂ +

(
a1 + a2 + a3 +m− 1

)
Ê1 +

(
2a1 + a2 + a3 +m+ m̃− 2

)
E2

)
is not log canonical at the point O.

We claim that O ∈ L̂1 ∪ Ê1. Indeed, we have (2a1 + a2 + a3 + m + m̃− 2) < 1 by

(4.6). Thus, if O 6∈ L̂1 ∪ Ê1, then Corollary 2.7 gives

m̃ = Ω̂ · E2 >
(
Ω̂ · E2

)
O
> 1,

which is impossible by (4.7). Thus, we have O ∈ L̂1 ∪ Ê1.
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If O ∈ Ê1, then the log pair

(
Ŝ, Ω̂ +

(
a1 + a2 + a3 +m− 1

)
Ê1 +

(
2a1 + a2 + a3 +m+ m̃− 2

)
E2

)
is not log canonical at the point O. Then Corollary 2.7 gives a1 + a2 + a3 +m+ m̃ > 2,

so that (4.5) and (4.6) gives

(17

9
+ εk

)
λ > 2a1 + a2 + a3 +m+ m̃ > 2 + a1 > 3− λ

2
,

which is impossible, since λ < 6
5

and εk → 0 as k →∞.

Thus, we see that O ∈ L̂1. Then the log pair

(
Ŝ, a1L̂1 + Ω̂ +

(
2a1 + a2 + a3 +m+ m̃− 2

)
E2

)
is not log canonical at the point O. Now, using (4.6) and (4.7), we have

multO

(
Ω̂+
(
2a1+a2+a3+m+m̃−2

)
E2

)
= 2a1+a2+a3+m+2m̃−2 <

(10

3
+

3εk
2

)
λ−3 < 1,

since λ < 6
5

and k � 1. Thus, Lemma 2.6 gives

L1 · Ω + 2a1 + a2 + a3 − 2 = L̂1 ·
(

Ω̂ +
(
2a1 + a2 + a3 +m+ m̃− 2

)
E2

)
> 2− a1,

so that L1 · Ω + 3a1 + a2 + a3 > 4. Using (4.3) we get λ+ 4a1 > 4. Using (4.4), we get

(29

9
− εk

)
λ > 4,

which is impossible, since λ < 6
5

and εk → 0 as k →∞.

4.2.2 Case 2

We have TP = L1 + L2 + L3, where L1, L2 and L3 are coplanar lines such that

P = L1 ∩ L2 and P /∈ L3. As in the previous case, we write

λD = a1L1 + a2L2 + Ω,
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where a1 and a2 are nonnegative rational numbers, and Ω is an effective Q-divisor whose

support does not contain the lines L1 and L2. Then

L1 · Ω = λ+ a1 − a2. (4.8)

Denote by L̃1 and L̃2 the proper transforms on S̃ of the lines L1 and L2, respectively.

We know that Q ∈ L̃1 ∪ L̃2, so that we may assume that Q = L̃1 ∩ E1. Let Ω̃ be the

proper transform of the divisor Ω on the surface S̃, and let m = multP (Ω). Then the

log pair (
S̃, a1L̃1 + Ω̃ +

(
a1 + a2 + a3 +m− 1

)
E1

)
is not log canonical at the point Q.

By Lemma 4.3, we have

a1 6
(5

9
+ εk

)
λ < 1, (4.9)

where εk is a small constant depending on k such that εk → 0 as k → ∞. Thus, using

Corollary 2.7, we obtain L1 · Ω > 2− a1 − a2. Then, using (4.8), we deduce

a1 >
2− λ

2
. (4.10)

Let m̃ = multQ(Ω̃). By Lemma 4.5, we have

2a1 + a2 +m+ m̃ 6
(49

27
+ εk

)
λ. (4.11)

where εk is a small constant depending on k such that εk → 0 as k → ∞. Thus, using

(4.10) and m̃ 6 m, we deduce

m̃ <
(38

27
+
εk
2

)
λ− 1 < 1. (4.12)

Denote by L̂1 and Ω̂ the proper transforms on Ŝ of the divisors L̃1 and Ω̃, respec-

tively. Then the log pair

(
Ŝ, a1L̂1 + Ω̂ +

(
a1 + a2 +m− 1

)
Ê1 +

(
2a1 + a2 +m+ m̃− 2

)
E2

)
is not log canonical at the point O. Then 2a1 + a2 + m + m̃ − 2 < 1 by (4.11). Thus,
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using (4.12) and arguing as in Subsection 4.2.1, we see that O ∈ L̂1 ∪ Ê1.

If O ∈ Ê1, then the log pair

(
Ŝ, Ω̂ +

(
a1 + a2 +m− 1

)
Ê1 +

(
2a1 + a2 +m+ m̃− 2

)
E2

)
is not log canonical at the point O, so that a1 +a2 +m+ m̃ > 2 by Corollary 2.7. Hence,

using (4.10) and (4.11), we get

(49

27
+ εk

)
λ > 2a1 + a2 +m+ m̃ > 2 + a1 > 3− λ

2
,

which is impossible, since λ < 6
5

and εk → 0 as k →∞.

We see that O ∈ L̂1. Then the log pair

(
Ŝ, a1L̂1 + Ω̂ +

(
2a1 + a2 +m+ m̃− 2

)
E2

)
is not log canonical at the point O. Now, using (4.11) and (4.12), we deduce

multO

(
Ω̂ +

(
2a1 +a2 +m+ m̃−2

)
E2

)
= 2a1 +a2 +m+ 2m̃−2 <

(29

9
+

3εk
2

)
λ−3 < 1,

because λ < 6
5

and k � 1. Then we may apply Lemma 2.6 to get

L1 · Ω + 2a1 + a2 − 2 = L̂1 ·
(

Ω̂ +
(
2a1 + a2 +m+ m̃− 2

)
E2

)
> 2− a1,

so that L1 · Ω + 3a1 + a2 > 4. Using (4.8) we get λ+ 4a1 > 4. Then, by (4.9), we have

(29

9
− εk

)
λ > 4,

which is impossible, since λ < 6
5

and εk → 0 as k →∞.

4.2.3 Case 3

We have TP = L+C, where L is a line and C is an irreducible conic such that they

intersect transversally at P . As in the previous cases, we write

λD = aL+ bC + Ω,
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where a and b are nonnegative rational numbers, and Ω is an effective Q-divisor whose

support does not contain the curves L and C. Then Lemma 4.3 gives us

a1 6
(5

9
+ εk

)
λ < 1, (4.13)

where εk is a small constant depending on k such that εk → 0 as k →∞. And also, we

have

L · Ω = λ+ a− 2b. (4.14)

Denote by L̃ and C̃ the proper transforms on S̃ of the curves L and C, respectively.

We know that Q ∈ L̃∪C̃. Moreover, using (4.2) and Lemma 4.7, we see that Q = L̃∩E1.

Denote by Ω̃ the proper transforms on S̃ of the divisor Ω. Let m = multP (Ω). Then

the log pair (
S̃, aL̃+ Ω̃ +

(
a+ b+m− 1

)
E1

)
is not log canonical at Q. Since a < 1, we can apply Corollary 2.7 to this log pair and the

curve L̃. This gives L ·Ω > 2−a−b. Combining this with (4.14), we have λ+2a−b > 2,

so that

a >
2 + b− λ

2
>

2− λ
2

. (4.15)

Let m̃ = multQ(Ω̃). Then Lemma 4.6 gives

2a+ b+m+ m̃ 6
(9

5
+ εk

)
λ, (4.16)

where εk is a small constant depending on k such that εk → 0 as k → ∞. Thus, using

(4.15) and m̃ 6 m, we deduce that

m̃ <
(7

5
+
εk
2

)
λ− 1 < 1. (4.17)

Denote by L̂ and Ω̂ the proper transforms on Ŝ of the divisors L̃ and Ω̃, respectively.

Then the log pair

(
Ŝ, aL̂+ Ω̂ +

(
a+ b+m− 1

)
Ê1 +

(
2a+ b+m+ m̃− 2

)
E2

)
is not log canonical at the point O. Note that 2a+ b+m+ m̃− 2 < 1 by (4.16). Thus,

using (4.17) and arguing as in Subsection 4.2.1, we see that O ∈ L̂ ∪ Ê1.
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If O ∈ Ê1, then the log pair

(
Ŝ, Ω̂ +

(
a+ b+m− 1

)
Ê1 +

(
2a+ b+m+ m̃− 2

)
E2

)
is not log canonical at O. Applying Corollary 2.7 again, we obtain a + b + m + m̃ > 2,

so that (4.15) and (4.16) give

(9

5
+ εk

)
λ > 2a+ b+m+ m̃ > 2 + a > 3− λ

2
,

which is impossible, since λ < 6
5

and εk → 0 as k →∞.

We see that O ∈ L̂. Then the log pair

(
Ŝ, aL̂+ Ω̂ +

(
2a+ b+m+ m̃− 2

)
E2

)
is not log canonical at the point O. Now using (4.16) and (4.17), we obtain

multO

(
Ω̂ +

(
2a+ b+m+ m̃− 2

)
E2

)
= 2a+ b+m+ 2m̃− 2 <

(12

5
+

3εk
2

)
λ− 3 < 1,

because λ < 6
5

and εk → 0 as k →∞. Thus, applying Lemma 2.6, we get

L · Ω + 2a+ b− 1 = L̂ ·
(

Ω̂ +
(
2a+ b+m+ m̃− 2

)
E2

)
> 2− a,

which gives L · Ω + 3a + b > 4. Using (4.14), we get λ + 4a > 4 + b > 4, so that (4.13)

implies that (29

9
− εk

)
λ > 4,

which is impossible, since λ < 6
5

and εk → 0 as k →∞.

4.2.4 Case 4

We have TP = L+C, where L is a line, and C is an irreducible conic that tangents

L at the point P . We write

λD = aL+ bC + Ω,
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where a and b are nonnegative rational numbers, and Ω is an effective Q-divisor whose

support does not contain L and C. Let m = multP (Ω). Then

a+ b+m > 1 (4.18)

by Lemma 2.5. Meanwhile, it follows from Lemma 4.3 that

a1 6
(5

9
+ εk

)
λ < 1, (4.19)

where εk is a small constant depending on k such that εk → 0 as k →∞. And also, we

have

L · Ω = λ+ a− 2b. (4.20)

Denote by L̃ and C̃ the proper transforms on S̃ of the curves L and C, respectively.

We know that Q = L̃ ∩ C̃. Denote by Ω̃ the proper transforms on S̃ of the divisor Ω.

Then the log pair (
S̃, aL̃+ bC̃ + Ω̃ +

(
a+ b+m− 1

)
E1

)
is not log canonical at the point Q. Since a < 1 by (4.19), we may apply Corollary 2.7

to this log pair at Q with respect to the curve L̃. This gives

L · Ω > 2− a− 2b.

Combining this with (4.20), we get λ+ 2a > 2, so that

a >
2− λ

2
. (4.21)

Let m̃ = multQ(Ω̃). Then Lemma 4.8 gives

2a+ 2b+m+ m̃ = λ ·multQ(π∗(D)) 6
(17

9
+ εk

)
λ. (4.22)

where εk is a small constant depending on k such that εk → 0 as k → ∞. Thus, using

(4.21) and m̃ 6 m, we deduce that

m̃ <
(13

9
+
εk
2

)
λ− 1 < 1. (4.23)
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Denote by L̂, Ĉ and Ω̂ the proper transforms on Ŝ of the divisors L̃, C̃ and Ω̃,

respectively. Then the log pair

(
Ŝ, aL̂+ bĈ + Ω̂ +

(
a+ b+m− 1

)
Ê1 +

(
2a+ 2b+m+ m̃− 2

)
E2

)
is not log canonical at O. Moreover, it follows from (4.22) that 2a+ 2b+m+ m̃− 2 < 1.

Thus, using (4.23) and arguing as in Subsection 4.2.1, we see that O ∈ L̂ ∪ Ĉ ∪ Ê1.

If O ∈ Ê1, then the log pair

(
Ŝ, Ω̂ +

(
a+ b+m− 1

)
Ê1 +

(
2a+ 2b+m+ m̃− 2

)
E2

)
is not log canonical at O. In this case, Corollary 2.7 applied to this log pair (and the

curve E2) gives a+ b+m+ m̃ > 2, so that (4.21) and (4.16) give

(17

9
+ εk

)
λ > 2a+ 2b+m+ m̃ > 2 + a+ b > 3− λ

2
,

which is impossible, since λ < 6
5

and εk → 0 as k →∞.

If O ∈ Ĉ, then the log pair

(
Ŝ, bĈ + Ω̂ +

(
2a+ 2b+m+ m̃− 2

)
E2

)
is not log canonical at O. In this case, if we apply Corollary 2.7 to this log pair with

respect to E2, we get b+ m̃ > 1, so that (4.22) gives

2a+ b+m+ 1 <
(17

9
+ εk

)
λ− 1.

Combining this with (4.18)), we see that a < (17
9

+ εk)λ− 2, so that (4.21) gives

(43

18
+ εk

)
λ > 3,

which is impossible, since λ < 6
5

and εk → 0 as k →∞.

We see that O ∈ L̂. Then the log pair

(
Ŝ, aL̂+ Ω̂ +

(
2a+ 2b+m+ m̃− 2

)
E2

)
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is not log canonical at the point O. Now using (4.22), (4.23) and λ < 6
5
, we deduce that

multO

(
Ω̂ +

(
2a+ 2b+m+ m̃− 2

)
E2

)
= 2a+ 2b+m+ 2m̃− 2 <

(10

3
+

3εk
2

)
λ− 3 < 1.

since λ < 6
5

and k →∞. Then we may apply Lemma 2.6 to get

L · Ω + 2a+ 2b− 2 = L̂ ·
(

Ω̂ +
(
2a+ 2b+m+ m̃− 2

)
E2

)
> 2− a,

which gives L · Ω + 3a + 2b > 4. Using (4.20), we see that λ + 4a > 4, so that (4.19)

gives (29

9
− εk

)
λ > 4,

which is impossible, since λ < 6
5

and εk → 0 as k →∞.

The proof of Theorem 4.1 is complete.

57



北京大学博士研究生学位论文

58



Chapter 5 Delta invariants on asymptotically log Fano surfaces

Chapter 5 Delta invariants on asymptotically

log Fano surfaces

In this chapter we study δ-invaraints on log Fano surfaces. We will be mainly inter-

ested in a special family of asymptotically log del Pezzo surfaces, which is conjectured to

admit Kähler-Einstein edge metrics (cf. [14]). We partially verify this conjecture from

the algebraic side, by showing that, a general element of this family is uniformly log

K-stable.

5.1 Basic set-up

Let S = P1 × P1, and let C be a smooth curve of bi-degree (1, 2) in S. Then S

contains exactly two curves of bi-degree (1, 0) that are tangent to C. Denote them by

F 0 and F∞. Then each intersection F 0 ∩ C and F∞ ∩ C consists of one point. Let

F 1, . . . , F r be

r ≥ 7

distinct curves in S of bi-degree (1, 0) that are all different from the curves F 0 and F∞.

Then each intersection F i ∩C consists of two points. Let P i be one of these two points.

Let π : S → S be blow up of the points P 1, . . . , P r, and let C be the proper transform

of the curve C. Then

C2 = C
2 − r = 4− r < 0,

since we assume that r ≥ 7. This shows that the curve C is contained in the boundary

of the Mori cone of the surface S. Moreover, it is not hard to check that F0, C +F1 and

C + E1 are in the boundary of the Mori cone as well.

Denote by Ei the exceptional curve of the blow up π such that π(Ei) = P i. Simi-

larly, denote by F0, F1, . . . , Fr, F∞ the proper transform on the surface S of the curves

F 0, F 1, . . . , F r, F∞. Also denote by F a general curve in the pencil |F0|. Finally, let

L = −
(
KS + (1− β)C

)
,
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where β is a sufficiently small positive rational number. Then

L ∼Q F + βC,

which implies that L is ample for β < 2
r−4 . So in particular, (S, (1− β)C) is a log Fano

pair for sufficiently small β.

The main goal of this chapter is to show the following

Theorem 5.1. The log pair (S, (1−β)C) is uniformly log K-stable for sufficiently small

cone angle β.

By the recent work of Tian-Wang [59] and Berman-Blum-Jonsson [7], this result

implies that the log pair (S, (1 − β)C) admits Kähler-Einstein edge metrics with cone

angle β along C when β is small enough. We will prove Theorem 5.1 by showing that

δ(S, (1 − β)C) > 1 (cf. Theorem 1.3,5.6). To this end, we first need several multiply

estimates.

5.2 Multiplicity estimates

We use the same notation as in the previous section. Suppose that

D ∼Q L

is any n-basis type divisor of L. with n � 1. Let Z be a smooth curve on the surface

S. We will write

D = aZ + ∆,

where a ≥ 0, ∆ is an effective divisor and Z is not contained in the support of ∆. Our

goal is to estimate a from above. By Theorem 2.12, we know that

a ≤ 1

L2

∫ τ(Z)

0

vol(L− xZ)dx+ εn,

where εn → 0 as n→∞.

Lemma 5.2. Let Z be an irreducible curve in |F |. Then

a ≤ 1

2
− β(r − 4)

8
+

5(r − 4)2β2

96
+O(β3) + εn.
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Proof: Since L ∼Q F + βC and C2 < 0, we have

τ(L,Z) = 1

To find σ(L,Z), we compute

(
L− λZ

)
· C = (1− λ)F · C + βC2 = 2(1− λ)− β(r − 4),

where λ ∈ Q. This gives

σ(L,Z) = 1− β r − 4

2
≤ 1 = τ(L,Z).

Then the result follows from Theorem 2.12. Indeed, we have

a ≤ 1

L2

∫ 1

0

vol(L− xZ)dx+ εn

=
1

L2

∫ 1− r−4
2
β

0

(L− xZ)2dx+
β3

3
(r − 4)2 + εn

=
2β − β2(r − 4) + β3(r−4)2

3

4β − β2(r − 4)
+ εn

=
1

2
− (r − 4)β

8
+

5(r − 4)2β2

96
+O(β3) + εn

Lemma 5.3. Let Z be one of the π-exceptional curves. Then

a ≤ 1

2
− β(r − 6)

8
+O(β2) + εn

for some constant ε that depends only on the classed of L and Z in Pic(S).

Proof: Without loss of generality, we may assume that Z = E1. Since L ∼Q E1 +F1 +

βC and F1 + βC is on the boundary of the Mori cone, we have τ(L,Z) = 1. To find

σ(L,Z), observe that F ∼ E1 + F1, so that

L− λZ ∼Q (1− λ)Z + F1 + βC,
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where λ ∈ Q. Thus, we compute

(
L− λZ

)
· F1 = β − λ.

Similarly, we have

(
L− λZ

)
· C = (1− λ)F · C + βC2 = 2− β(r − 4)− λ,

This gives σ(L,Z) = β, since β is assumed to be sufficiently small.

Now, let us use Theorem 2.12. It gives

a ≤ 1

L2

∫ 1

0

vol(L− xZ)dx+ εn.

We set

µ = 1− β(r − 5)

2
.

We aligned the estimate in three pieces:

a ≤ 1

L2
(

∫ β

0

vol(L− xZ)dx+

∫ µ

β

vol(L− xZ)dx+

∫ 1

µ

vol(L− xZ)dx) + εn

• For the first piece, since L− xZ is nef for x ∈ [0, β], we have

∫ β

0

vol(L− xZ)dx =

∫ β

0

(L− xZ)2dx

• For the second piece, we use Lemma 2.10. Notice that

(L− xZ) · F1 = β − x.

So we get

vol(L− xZ) = vol(L− xZ − (x− β)F1), x ≥ β.

In other words, to calculate the volume, we can replace the line bundle L− xZ by

L− xZ − (x− β)F1 when x ≥ β. Now, observe that

L− xZ − (x− β)F1 ∼ (1− x)F0 + βC + βF1.
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So L− xZ − (x− β)F1 is nef if and only if

((1− x)F0 + βC + βF1) · C ≥ 0.

So we see that, L− xZ − (x− β)F1 is nef if and only if

x ≤ 1− β

2
(r − 5) = µ.

Therefore, for β ≤ x ≤ µ, we get

vol(L− xZ) = (L− xZ − (x− β)F1)
2 = 4β(1− x)− β2(r − 5).

So we have ∫ µ

β

vol(L− xZ) =

∫ µ

β

(4β(1− x)− β2(r − 5))dx.

• For the third piece, we clearly have∫ 1

µ

vol(L− xZ)dx ≤ (1− µ)vol(L− µZ) =
β3(r − 5)2

2

Summing up the three pieces, we get

a ≤ 2− (r − 5)β +O(β2)

4− (r − 4)β
+ εn =

1

2
+

6− r
8

β +O(β2) + εn.

Lemma 5.4. Let Z be one of the curves F1, . . . , Fr. Then

a ≤ 1

2
+

6− r
8

β +O(β2) + εn.

Proof: The proof is exactly the same as above since Ei and Fi are symmetric in our

calculations.

Lemma 5.5. Let Z be the curve C. Then

a ≤ β

2
+
r − 4

24
β2 +O(β3) + εn.
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Proof: We have

σ(L,Z) = τ(L,Z) = β

in this case, so by Theorem 2.12, we have

a ≤ 1

L2

∫ β

0

(L− xZ)2dx+ εn.

Simplifying, we get (this holds for any r ≥ 1)

a ≤ β

2
+
r − 4

24
β2 +O(β3) + εn.

5.3 Proof of the main result

We fix β > 0, which is a sufficiently small rational number. We also fix r ≥ 7.

We use the same notation as in the Section 5.1. The main result of this section is the

following.

Theorem 5.6. One has

δ(S, (1− β)C) > 1.

The proof of this theorem uses standard techniques from [11]. We fix a constant

λ > 1 which is sufficiently close to 1, say

λ = 1 +
β

100
.

In this section, D will always denote a k-basis type divisor of the Q-line bundle −KS −
(1− β)C. Here we assume that k is sufficiently large.

To prove Theorem 5.6, it is enough to show that

(S, (1− β)C + λD)

is log canonical for any k-basis type divisor D with k � 1. We argue by contradiction.

Suppose that there exists a k-basis type divisor D with k � 1 such that the log

pair

(S, (1− β)C + λD)
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is not lc at some point P ∈ S. We will seek for a contradiction. We split the argument

into several lemmas.

Lemma 5.7. The point p is contained in C ∪ E1 ∪ · · · ∪ Er ∪ F1 ∪ · · · ∪ Fr.

Proof: If this is not the case, then let Z ∈ |F0| be the curve that contains p. Then Z

is irreducible and smooth. We write

λD = aZ + ∆.

Then by inversion of adjunction, we have

2λβ = Z ·∆ > 1,

which is a contradiction since λβ is small.

Lemma 5.8. The point p is contained in the curve C.

Proof: If this is not the case, then suppose that P ∈ E1. We write

λD = aE1 + ∆.

By Lemma 5.3 we may assume that

a ≤ 2

3
.

On the other hand, by inversion of adjunction at the point p, we have

a+ λβ = E1 ·∆ > 1,

which is a contradiction since β is assumed to be sufficiently small. The same argument

works for any other Ei and Fi.

Lemma 5.9. The point p is contained in F0 ∪ F1 ∪ · · · ∪ Fr ∪ E1 ∪ · · · ∪ Er.

Proof: If this is not the case, then P ∈ C is a general point. Let Z ∈ |F0| be the curve

that contains p. Then Z intersects C transversely at p. We write

λD = aZ + εC + Ω.
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By our assumption, the log pair

(S, (1− β + ε)C + aZ + Ω)

is not lc at p. By Lemma 5.2 and Lemma 5.5, we may assume that

0 ≤ a ≤ 2

3
, 0 ≤ ε ≤ 2β

3
.

If we put

m = multpΩ,

then we have

m ≤ (Z · Ω)p ≤ 2(λβ − ε).

It is also clear that

(C · Ω)p ≤ C · Ω = 2λ− 2a− (λβ − ε)(r − 4).

Now we apply Theorem 2.16 at the point p. We get

(C · Ω)p >
(Z · Ω)p

(Z · Ω)p − (β − ε)
(1− a)− (β − ε).

Thus we have

2λ− 2a− (λβ − ε)(r − 4) >
2(λβ − ε)

2(λβ − ε)− (β − ε)
(1− a)− (β − ε).

Rearranging this, we get

(2− β)(λ− 1) +
2(λ− 1)(1− a)β

(2λ− 1)β − ε
> (λβ − ε)(r − 5).

Using ε ≤ 2β
3

, we easily deduce that

(8− β − 6a)(λ− 1) > (λ− 2

3
)(r − 5)β.

which is impossible for r ≥ 6 and λ = 1 + β
100

.
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Lemma 5.10. The point p is contained in F0 ∪ F∞.

Proof: Suppose that this is not the case. Then without loss of generality, we may

assume that p is contained in E1 ∪ F1. We decompose λD as

λD = aEE1 + aFF1 + εC + Ω.

We may assume that P = E1 ∩C (the proof for P = F1 ∩C is exactly the same). Then

by our assumption, the log pair

(S, (1− β + ε)C + aEE1 + Ω)

is not lc at the point p. By Lemma 5.3 and Lemma 5.5, we may assume that

0 ≤ aE ≤
2

3
, 0 ≤ ε ≤ 2β

3
.

We set

m = multpΩ.

Notice that we have

λβ − ε+ aE − aF = E1 · Ω ≥ m,

λβ − ε− aE + aF = F1 · Ω ≥ 0.

From these two inequalities we get

m ≤ 2(λβ − ε), aE − aF ≤ λβ − ε.

In the meantime, it is also clear that

(C · Ω)p ≤ C · Ω = 2λ− aE − aE − (λβ − ε)(r − 4),

(E1 · Ω)p ≤ E1 · Ω = λβ − ε+ aE − aF ≤ 2(λβ − ε).

Now we apply Theorem 2.16 at the point p. We get

(C · Ω)p >
(E1 · Ω)p

(E1 · Ω)p − (β − ε)
(1− aE)− (β − ε).

67



北京大学博士研究生学位论文

Then we have

2λ− aE − aF − (λβ − ε)(r − 4) >
2(λβ − ε)

2(λβ − ε)− (β − ε)
(1− aE)− (β − ε).

Rearranging this, we get

(2− β)(λ− 1) +
2(λ− 1)(1− aE)β

(2λ− 1)β − ε
> (λβ − ε)(r − 5)− (aE − aF ).

Using aE − aF ≤ (λβ − ε) and ε ≤ 2β
3

, we easily see that

(8− β − 6aE)(λ− 1) > (λ− 2

3
)(r − 6)β,

which is impossible for r ≥ 7 and λ = 1 + β
100

.

With all the above lemmas combined, we may assume that

P = F0 ∩ C.

We write

λD = aF0 + εC + Ω.

To get a contradiction for this case, here we only require r ≥ 5. By Lemma 5.2 and

Lemma 5.5, we may assume that

0 ≤ 2a ≤ 1− β

5
, 0 ≤ ε ≤ 2β

3
.

Note that, here we used the fact that β and εk are sufficiently small. We set

m = multpΩ.

By our assumption, the log pair

(S, (1− β + ε)C + aF0 + Ω)

is not lc at p.

We let g : S̃ → S be the blow-up of the point p, and let G be the exceptional curve
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of g. We let C̃, F̃0 and Ω̃ be the proper transform of C, F0 and Ω respectively on the

surface S̃. Let us put

P̃ = C̃ ∩G, m̃ = multP̃ Ω̃.

Then by

2(βλ− ε)−m = F̃0 · Ω̃ ≥ m̃

we see that

m+ m̃ ≤ 2(βλ− ε).

Using m̃ ≤ m, we then get

m̃ ≤ λβ − ε.

By our construction, the log pair

(S̃, (1− β + ε)C̃ + aF̃0 + Ω̃ + (a+m− β + ε)G)

is not lc at some point Q ∈ G. Using inversion of adjunction along the exceptional curve

G, it is easy to find that

Q = P̃ .

Now let h : Ŝ → S̃ be the blow up of P1 and let H be the exceptional curve of h.

We let Ĉ, F̂0, G̃ and Ω̂ be the proper transform of C, F̃0, G and Ω̃ respectively on the

surface S̃. Let us set

P̂ = Ĉ ∩H.

By our construction, the log pair

(Ŝ, (1− β + ε)Ĉ + aF̂0 + Ω̂ + (a+m− β + ε)G̃+ (2a+m+ m̃− 2β + 2ε)H)

is not lc at some point O ∈ H. Using inversion of adjunction along the exceptional curve

H, it is easy to find that

O = P̂ .

So we see that, the log pair

(Ŝ, (1− β + ε)Ĉ + Ω̂ + (2a+m+ m̃− 2β + 2ε)H)
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is not lc at the point P̂ . We put

m̂ = multP̂ Ω̂.

It is clear that

m̂ ≤ (H · Ω̂)P̂ ≤ m̃2 ≤ (λβ − ε).

Meanwhile, by m+ m̃ ≤ 2(λβ − ε) and 2a ≤ 1− β
5
, it is easy to check that

(2a+m+ m̃− 2β + 2ε) ≤ 1− β

10
.

Then we can apply Theorem 2.16 at the point P̂ . We get

(Ĉ · Ω̂)P̂ >
(H · Ω̂)P̂

(H · Ω̂)P̂ − (β − ε)
(1− (2a+m+ m̃− 2β + 2ε))− (β − ε).

So we have

(Ĉ · Ω̂)P̂ >
(λβ − ε)

(λβ − ε)− (β − ε)
· β

10
− (β − ε) =

(λβ − ε)
10(λ− 1)

− (β − ε).

Now simply using

(Ĉ · Ω̂)P̂ ≤ C · Ω−m− m̃ ≤ C · Ω = 2λ− (λβ − ε)(r − 4) ≤ 2λ,

we get

2λ >
(λβ − ε)
10(λ− 1)

− (β − ε).

Using 0 ≤ ε ≤ 2β
3

, we arrive at

2λ+ β >
(λ− 2

3
)

10(λ− 1)
β,

which gives a contradiction since we chose λ = 1 + β
100

with β sufficiently small. The

proof of Theorem 5.6 is complete.
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[20] V. Datar, G. Székelyhidi, Kähler–Einstein metrics along the smooth continuity

method, Geom. Funct. Anal. 26 (2016), 975–1010.

[21] R. Dervan, Uniform stability of twisted constant scalar curvature Kähler metrics,

Int. Math. Res. Notice (2016), 4728-4783.

[22] W. Ding, G. Tian, Kähler-Einstein metrics and the generalized Futaki invariant.

Invent. Math. 110 (1992), no. 2, 315-335.

[23] S. Donaldson, Scalar curvature and stability of toric varieties, J. Diff. Geom., 62

(2002), 289-349.

[24] T. Fujita, On Zariski problem, Proc. Japan Acad. 55 (1979), 106–110.

72



References

[25] K. Fujita, Uniform K-stability and plt blowups of log Fano pairs, preprint,

arXiv:1701.00203 (2017).

[26] K. Fujita, Y. Odaka, On the K-stability of Fano varieties and anticanonical divisors,

Tohoku Math. J. (2) 70 (2018), 511-521.

[27] K. Fujita, On log K-stability for asymptotically log Fano varieties, preprint,

arxiv:1509:02808.

[28] K. Fujita, Optimal bounds for the volumes of Kähler–Einstein Fano manifolds,

Amer. J. Math. 140, (2018), 391-414.

[29] K. Fujita, A valuative criterion for uniform K-stability of Q-Fano varieties,

arxiv:1602.00901.

[30] K. Fujita, Openess results for uniform K-stability preprint, arxiv:1709.08209.

[31] A. Futaki, An obstruction to the existence of Einstein-Kähler metrics, Invent. Math.

73 (1983), 437-443.

[32] T. Jeffres, R. Mazzeo, Y.A. Rubinstein, Kähler–Einstein metrics with edge sin-

gularities, (with an appendix by C. Li and Y.A. Rubinstein), Ann. of Math. 183

(2016), 95–176.

[33] J. Kollár, Singularities of pairs, in: Algebraic Geometry, Amer. Math. Soc. (1997),

221–287.

[34] A. Corti, J. Kollár, K. Smith, Rational and nearly rational varieties, Cambridge

University Press, 2004.

[35] R. Lazarsfeld, M. Mustata, Convex bodies associated to linear series, Ann. Sci. Eco.

Norm. Sup. 42 (2009), 783–835.

[36] R. Lazarsfeld, Positivity in Algebraic Geometry, I, II, Springer 2004.

[37] C. Li, Greatest lower bounds on Ricci curvature for toric Fano manifolds, Adv.

Math. 226 (2011), 4921–4932.

[38] C. Li, Yau-Tian-Donaldson correspondence for K-semistable Fano manifolds, J.

reine angew. Math. 733 (2017), 55–85.

73



北京大学博士研究生学位论文

[39] C. Li, K-semistability is equivariant volume minimization, Duke Math. J. 166

(2017), 3147–3218.

[40] C. Li, S. Sun, Conical Kähler–Einstein metric revisited, Commun. Math. Phys. 331

(2014), 927–973.

[41] Y. Matsushima, Sur la structure du groupe d’homéomorphsimes analytiques d’une
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