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ABSTRACT

Computing delta invariants on algebraic surfaces
Kewei Zhang (Math)
Directed by Xiaohua Zhu and Yanir Rubinstein

This thesis mainly studies the relation between the d-invariant and the existence of
Kéhler-Einstein metrics on Fano manifolds. dJ-invariant is closely related to the a-
invariant and the K-stability introduced by Tian. In the first part of the thesis, we
discuss the properties of o and d-invaraints. We will show the equivalence between the
0-invariant and the greatest Ricci lower bound on Fano manifolds, which generalizes a
result of Fujita-Odaka and Blum-Jonsson. In the second part of this thesis, we will search
for effective methods to calculate d-invariant on complex surfaces. The main ingredients
of our method is to estimate the singularities of divisors on surfaces via local intersection
inequalities. In particular, we will calculate the d-invariants and give a new proof of the
K-stability of cubic surfaces. Meanwhile, we will also give a new family of log K-stable

surfaces by calculating their d-invariants.

KEYWORDS: é-invariant; Kahler-Einstein metrics; K-stability; a-invariant
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Kahler-Einstein problem

A central problem in Kahler geometry is to find canonical metrics on a given com-
pact Kahler manifold. One important class of canonical metrics is the Kahler-Einstein
(KE) metric. A Kéhler metric is KE if the Ricci form of the Kéhler metric is a constant
multiple of the Kéhler form. As we know, the Ricci form of a Kahler metric must lie in
the first Chern class of the manifold. Therefore, a necessary condition for the existence

of KE metric is that the first Chern class of the manifold has a sign.
The study of KE metrics has a long history. In the cases where the first Chern class

is zero or negative, the uniqueness of the KE metric was proved by Calabi in the 1950s,
and the existence of such a metric was obtained in 1978 by Yau [61] (see also Aubin [1]).
However, when the first Chern class is positive (i.e., for Fano manifolds), the situation
is much more complicated. It turns out that there are obstructions to the existence of
KE metrics on Fano manifolds. The first obstruction was found by Matsushima [41]
in 1957, which says that the automorphism group of a KE Fano manifold must be
reductive. In 1983 another obstruction was found by Futaki in [31], where he defined
an holomorphic invariant (which we now call Futaki invariant) and it was shown that
the Futaki invariant must vanish if the Fano manifold admits a KE metric. In 1985,
Bando-Mabuchi ﬂgﬂ showed that, if any, the KE metric on a Fano manifold is unique up
to biholomorphic automorphisms.

So it is natural to ask, when does a Fano manifold admit a KE metric? Regarding
this problem, many significant results were obtained in history. For instance, in 1990,
Tian completely solved the existence problem for Fano surfaces and showed that
the existence of KE metrics is equivalent to the reductivity of the automorphism groups
of Fano surfaces; in 2004, Xujia Wang and Xiaohua Zhu showed that there always
exist Kahler-Ricci solitons on toric Fano manifolds and the soliton metric is KE if and
only if the Futaki invaraint vanishes.

For general Fano manifolds, the existence of KE metrics is more difficult to char-
acterize. In 1992, Ding-Tian defined a generalized Futaki invariant for a defor-
mation family of Fano manifolds, and based on this, in 1997, Tian [55] introduced

1
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an algebro-geometric notion called K-stability. This notion was later reformulated by
Donaldson using more algebraic language. And the famous Yau-Tian—-Donaldson
conjecture says that, the existence of KE metrics on Fano manifolds is equivalent to
K-stability. This conjecture was recently solved by Tian [58] and Chen-Donaldson-
Sun [17] independently in 2012.(For the precise definition of K-stability, we refer the

reader to , , )

1.2 oa-invaraint and J-invariant

However, given a general Fano manifold, it is very difficult to test its K-stability
and hence the existence of KE metric is not easy to determine. So it is an important
problem to find a computable criterion that one can use to determine if the manifold
admits a KE metric or not. In history, the first effective criterion was found in 1987 by

Tian , which is known as the a-invariant.

Theorem 1.1 ( ) Let X be a Fano manifold. Suppose that a(X) > dfiril?)(())?l. Then

X admits a Kahler-Finstein metric.
Note that many examples of KE manifolds have been found with the help of a-
invariant. Here, a(X) can be defined by

the log pair (X, \D) is log canonical
a(X ) =sups A€ Q
for every effective Q-divisor D ~g —Kx

Roughly speaking, a(X) measures the singularities of all the divisors in the pluri-
anticanonical system. (See Section for more details.) But as one can see, Theorem

[[.T only gives a sufficient condition for the existence of KE metrics and the condition

al(X) > di(i:(n)(())(il turns out to be rather restrictive.

For instance, when X is a smooth cubic surface (which is a two-dimensional Fano
manifold), it is possible that a(X) = 2 (cf. Example , so Theorem fails to
work in this case. However Tian [53| still managed to show the existence of KE metrics
on cubic surfaces by modifying a-invariants and using hard core analysis. In Tian’s
argument, the singularities of pluri-anticaonical divisors play an essential role. So in his
1990 survey (page 590), Tian wrote down the following expectation:

The author believes that the existence of Kdhler-Einstein metric with positive scalar
curvature should be closely related to the geometry of pluri-anticaonical divisors.

2



Chapter 1 Introduction

Recently, this expectation has been realized with the help of a new invariant in-
troduced by Fujita-Odaka in 2016, which we now describe. For a sufficiently
. of the vector space H*(Ox(—kKx)), where
d, = h°(Ox(—kKx)). For this basis, consider Q-divisor

large integer k, consider a basis s1,--- , Sq

1
k—dkz {Si = 0} ~Q —Kx.
=1

Any Q-divisor obtained in this way is called a k-basis type (anticanonical) divisor. Let

the log pair (X, AD) is log canonical
5k(X) =sups A €Q
for every k-basis type Q-divisor D ~gp —Kx

Then let

d(X) = lim sup o, (X).
keN

So roughly speaking, 4(X) measures the singularities of basis type anti-canonical
divisors. Then Tian’s expectation can now be stated more rigorously using the following

recent result obtained by Blum-Jonsson [4] in 2017.

Theorem 1.2 ( 4, Theorem B|). The following assertions hold:
1. X is K-semistable if and only if 6(X) > 1;
2. X is uniformly K-stable if and only if 6(X) > 1.

Namely, d-invariant serves as a criterion for the existence of KE metrics.

This result also has a natural extension to the log Fano setting. To be more precise,
let (X, A) be a log Fano pair (i.e. (X,A) is a klt pair and —Kx — A is ample), then we
can define log K-stability for this pair. And by the solution of YTD conjecture ,
(see also the recent work of Tian-Wang [59]), we know that the geometric interpretation
of the log K-stability is the existence of Ké&hler-Einstein edge metrics. (The Kéhler-
Einstein edge metric is a smooth KE metric on X\ A but with edge singularities along
the divisor A.) Meanwhile, one can also define a log d-invariant 6(X, A) for the log pair
(X,A) (cf. Definition [3.§). Then relying on the work of Blum-Jonsson [4], Codogni-
Patakfalvi showed the following in 2018.

Theorem 1.3. ( [18, Corollary 4.8]) One has
1. (X, A) is log K-semistable if and only if 6(X,A) > 1;
3
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2. (X, A) is uniformly log K-stable if and only if §(X,A) > 1.

In other words, the log d-invariant can be used as a criterion for the existence of

Kahler-Einstein edge metrics.

1.3 Owur main results

In this thesis we will discuss several aspects of the d-invariant. Our first purpose
is to generalize Theorem to the case of §(X) < 1. More precisely, we prove the

following.

Theorem 1.4 ( [12]). Let X be a Fano manifold. let f(X) denote the greatest Ricci
lower bound of X. Then we have f(X) = min{d(X), 1}.

To prove this result, we will approximate 5(X) by a sequence of Kéhler-Einstein
edge metrics and it turns out that the corresponding log d-invaraints of this sequence
will converge to §(X). Note that Theorem can be thought of a special version of the
Yau-Tian-Donaldson correspondence for twisted KE metrics.

We will also give an effective method to estimate d-invariant on complex surface.
Note that the computation of d-invaraint is much harder than that of a-invariant. For
a-invariant, one can use various tools from birational geometry to estimate the log
canonical thresholds of divisors. For instance, the a-invariants of Fano surfaces have
been explicitly computed by Cheltsov [L1], and for Fano threefolds, this is also well
studied in the work of Cheltsov-Shramov [13].

However, to calculate d-invariant, so far there are very few tools. But still, there
have been some important progress in this area. In [43], Park and Won estimated
the d-invariants of all smooth Fano surfaces using deep analysis of Newton-polygons.
Their work gives a purely algebraic proof of Tian’s work , but it seems that their
method cannot be easily generalized to higher dimensions. For toric varieties, Blum-
Jonsson [4] showed that the -invaraint can be completely determined by the barycenter
of the corresponding polytope. However, their method is not likely to work for non-toric
varieties.

So in this thesis we present an alternative and more geometric approach to estimat-
ing the d-invariant. We will mainly work on complex surfaces, since this is already quite

4
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difficult. The main ingredient of our approach is the volume estimates for basis type
divisors on surfaces (cf. Theorem [2.12)), which can control the multiplicities of divisors
locally and hence allows us to estimate the corresponding log canonical thresholds. In

particular, we prove

Theorem 1.5 ( [16]). Let S be a smooth cubic surface in P. Then 6(S) > 2.

Note that this is a joint work with Ivan Cheltsov and it gives a new algebraic proof
for the K-stability of smooth cubic surfaces. Moreover, our bound for §(.5) is better
than the one obtained by Park-Won We hope that out methods can be generalized
to higher dimensions in future research.

Motivated by a conjecture of Cheltsov-Rubinstein [14], we will also investigate a
special family of log Fano surfaces (5, (1 — 5)C) (see section [5.1] for detailed definition
of the family). In , this family is conjectured to admit Kahler-Einstein edge metrics,
but it seems to the author that there is no easy analytic proof for this. So we attack
this problem from the algebraic side. Namely we will try to show that this family is
log K-stable by estimating the log d-invariants. But it turns out that the boundary
term (1 — 3)C causes new troubles. To overcome this, we will prove several new local
intersection inequalities in Section [2.3] which allows us to estimate the log canonical
thresholds effectively even with the appearance of the boundary term (1 — 8)C, and

thanks to which, we are able to prove the following.

Theorem 1.6 ( [12]). One has §(S, (1 — B)C) > 1 for sufficiently small j.

This is a joint work with Ivan Cheltsov and Yanir Rubinstein and it gives a whole
new family of log K-stable surfaces. This partially verifies the conjecture of Cheltsov-
Rubinstein [14].

The rest of this thesis is organized as follows. In Chapter[2 we collect some algebraic
tools that will be useful for us. Several new local intersection inequalities are proved
in Section [2.3] which will play significant roles in our computation of d-invariants on
complex surfaces. In Chapter |3| we will discuss the properties of a- and d-invaraints
with more detail and Theorem [L.4] will be proved in Section [3.2} In Chapter[4] we prove
Theorem [L.5] In Chapter [f] we prove Theorem [1.6]
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Chapter 2 Preliminaries

Chapter 2  Preliminaries

This chapter serves as a quick tour guide for various algebraic notions that will be
used in this thesis. Moreover we will develop some new intersection formulae, which will

play crucial roles in Chapter [4] and [5

2.1 Canonical singularities in birational geometry

In this section we recall some basic terminologies for canonical singularities appear-
ing in birational geometry. All varieties here are assumed to be normal over C.

Given a proper birational morphism 7 : Y — X, we define the exceptional set of
7 to be the smallest subset exc(m) C Y, such that 7 : Y\exc(m) — X\m(exc(m)) is an
isomorphism.

A log resolution of (X, A) is a proper birational morphism 7 : Y — X such that
7 (A) U {exc(m)} is divisor with simple normal crossing (snc) support. Log resolutions
exist for all the pairs we will consider in this article, by Hironaka’s theorem.

Assume that Kx + A is a Q-Cartier divisor. Given a log resolution of (X, A), write
™(Kx +A) =Ky +A+ Z&’Ei,

where A denotes the proper transform of A, and where exc(r) = UFE;, and E; are
irreducible codimension one subvarieties. Also, assume A = > §;A;, with A, irreducible
codimension one subvarieties, so A = > 8;A;. Singularities of pairs can be measured as

follows.

Definition 2.1. Let Z C X be a subvariety. A pair (X,A) has at most log canonical
(lc) singularities (or kit singularities, respectively) along Z if €;,0; < 1 for every i (or
if e;,0; < 1 for every i, respectively) such that w(E;) N Z # (0 and every j such that
A;NZ#0.

On a normal variety, an effective Q-divisor D is a formal linear combination with
coefficients in Q. of prime divisors. Thus, given such a D and a prime divisor F', one
has D = aF + A, for some a € Q; and A is an effective Q-divisor with F' ¢ suppA.

7
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The number a is called the vanishing order of D along F, denoted

Ol"dFD.

2.2 A tool box for complex surfaces

In this chapter, we collect some standard tools that will be useful for us to estimate

d-invariant on complex surfaces (cf. Chapter [4] and .

Definition 2.2. Let D be an effective divisor on S. Suppose that f is the local defining
equation of D around the point P, then the multiplicity of D at P, is defined to be the
vanishing order of f at P, which we denote by multp(D).

Remark 2.3. Let m: S — S be the blow up of the point P, and let E be the exceptional

curve of w. Denote by D the proper transform of D wvia w. Then we have
(D) = D + multp(D) - E.

Definition 2.4. Let C and Cs be two irreducible curves on a surface S. Suppose that
Cy and Cs intersect at P. Let Op be the local ring of germs of holomorphic functions
defined in some neighborhood of P. Then the local intersection number of Cy and Cs at

the point P is defined by

(Cl : C2)P = dimc Op/(f1, f2),

where fi and fy are local defining functions of Cy and Csy around the point p. The global

intersection number Cy - Cy is defined by

Cr-Cy= Y (C1-Cy),.
PeCiNCy
Note that ] - Cy only depends on the numerical classes of C and Cj.
The above two definitions extends to R-divisors by linearity. For instance, say
we have a curve C' and a R-divisor A meeting at the point p. We decompose A as

A =>".a;Z;, where Z;’s are distinct prime divisors and a; € R. Then,

(C’-A)P = Zai(C'Zi)Pv

)

8



Chapter 2 Preliminaries

where (C.Z;)p = 0 if Z; does not pass through the point P.
In the following, let D be an effective R-divisor on S. We will investigate the

canonical singularity of the log pair (S, D) at the point P in terms of multp(-) and (-)P.

Lemma 2.5 ( [33]). If (S, D) is not log canonical at P, then multp(D) > 1.

Let C be an irreducible curve on S. Write
D =aC + A,

where a is a non-negative real number that is also denoted as ordq (D), and A is an

effective R-divisor on S whose support does not contain the curve C'.

Lemma 2.6 ( Proposition 3.3]). Suppose that a < 1, the curve C is smooth at the
point P, and multp(A) < 1. If (S, D) is not log canonical at P, then

(C~A)P>2—a.

We will give the proof of this lemma in the next section. The following is often

referred to as the inversion of adjunction on surfaces.

Corollary 2.7. (Inversion of adjunction) If a < 1, the curve C' is smooth at P, and the
log pair (S, D) is not log canonical at P, then

(C-A),>1

Let m: S — S be the blow up of the point P, and let E; be the exceptional curve
of m. Denote by D the proper transform of D via w. Then

Kz + D+ (multp(D) — 1) Ey ~g 7*(Ks + D).

This implies

Corollary 2.8. The log pair (S, D) is log canonical at P if and only if the log pair
(§, D + (multp(D) — 1)E1)

18 log canonical along the curve Ey.
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Thus, using Lemma [2.5] and Corollary[2.8] we obtain the following simple criterion.
Corollary 2.9. Suppose that
multg (7*(D)) = multp(D) + multg (5) <2
for every point Q € Ey. Then (S, D) is log canonical at P.

If D is a Cartier divisor, then its volume is the number

1O (kD)
(D) =1 _—
vol(D) mSup o
where the limsup can be replaced by a limit (see [36, Example 11.4.7]). Likewise, if D

is a Q-divisor, we can define its volume using the identity

vol()\D)

vol(D) = 2

for an appropriate A € Q~g. Then the volume vol(D) only depends on the numerical
equivalence class of the divisor D. Moreover, the volume function can be extended by

continuity to R-divisors. Furthermore, it is log-concave:

V/vol(Dy + Dy) = \/vol(Dy) + v/vol(Dy). (2.1)

for any pseudoeffective R-divisors Dy and D, on the surface S. This fact will be used in

our computation in Section For more details about volumes of R-divisors, we refer

the reader to ,.

If D is not pseudoeffective, then vol(D) = 0. If the divisor D is nef, then
vol(D) = D?.

This follows from the asymptotic Riemann-Roch theorem [36]. If the divisor D is not
nef, its volume can be computed using its Zariski decomposition ,. Namely,

if D is pseudoeffective, then there exists a nef R-divisor N on the surface S such that

D ~R N + Z aiC’i,
=1
10
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where each C; is an irreducible curve on S with N -C; = 0, each a; is a non-negative real
number, and the intersection form of the curves Ci,...,C, is negative definite. Such

decomposition is unique, and it follows from , Corollary 3.2] that
vol(D) = vol(N) = N2

This immediately gives

Corollary 2.10. Let Zy,. .., Zs be irreducible curves on S such that D-Z; < 0 for every

1, and the intersection form of the curves Zy, ..., Zs is negative definite. Then
vol(D) = vol <D — Z biZi>,
i=1

where by, ..., bs are (uniquely defined) non-negative real numbers such that

<D—ibiZl-> Z;=0
=1

for every 7.

Corollary 2.11. Let Z be an irreducible curve on S such that Z*> < 0 and D - Z < 0.
Then

vol(D) = Vol(D _D Z'2Z Z).

Let (S, L) be a polarized surface. Let n: S — S be a birational morphism (possibly
an identity) such that S is smooth. Fix a (non necessarily n-exceptional) irreducible

curve F in the surface S. Let
7(F) = sup {x € Ryg ‘ n*(L) — xF is pseudoeffective}.

This is called the pseudoeffective threshold of L with respect to F'.

Theorem 2.12. Suppose that (S, L) is a polarized surface, and D ~q L is a k-basis
type divisor with k> 1. Then

ordp(n*(D)) < 1

T(F)
< —2/ Vol(n*L—:cF)d:C+ek,
L* ),

where € is a small constant depending on k such that e, — 0 as k — oo.

11
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Proof: This is a very special case of [26] Lemma 2.2]. ]
The following (simple) result can be very handy.

Lemma 2.13. In the assumptions and notations of Theorem|2.12, one has

7(F)
/ vol(n*L — aF)dx < (7(F) — p)vol(n*L — puF)
m

for any p € [0, 7(F)].

Proof: The assertion follows from the fact that vol(n*L — zF’) is a non-increasing func-

tion on = € [0, 7(F)]. O
Using ([2.1)), this result can be improved as follows:

Lemma 2.14. In the assumptions and notations of Theorem|2.12, one has

7(F) )
/ vol(n*L — zF)dx < 3 <T(F) — ,u)vol(n*L — uF)
o
for any p € [0, 7(F)].
Proof: The required assertion follows from the proof of , Proposition 2.1]. O]

We will apply both Lemmas and to estimate the integral in Theorem

in the cases when it is not easy to compute.

2.3 Some new local inequalities on complex surfaces

Let us first give a proof of Lemma The proof actually uses Corollary (which

in turn is a simple application of the inversion of adjunction on surfaces).
Proof of Lemma[2.6. We argue by contradiction. Suppose that
(C : A)p S 2—a.

Then we get
m :=multp(A) <2 —a.

12
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Let 7 : S — S be the blowup of the point P and let E be the exceptional curve of 7.
Denote by C and A the proper transforms of C' and A resp. on S. Then the log pair

(S,(a+m—1)E+aC’+A)

is not log canonical at some point () € E. We claim that this ) has to be the intersection

point E N C. If this is not the case, then the pair

(S,(a-l—m—l)E—i—A)

is not log canonical at some point Q € F that is away from C. Then Corollary
applies (as (a +m — 1) < 1) and we obtain

m=FE-A>(E-A)g>1,

contradicting our assumption that m < 1. So we see that Q = E N C. Then applying
Corollary [2.7] to the pair (S, (a +m — 1)E +aC + A) at Q gives

a—1+(C-A)p= (é’-((a+m—1)E+A))Q > 1,
and hence
(C . A)p > 2 —a,
contradicting our assumption that (C'- A)p <2 — a. O

We continue with a new local inequality incorporating also an additional “boundary

curve”.

Theorem 2.15. Let S be a surface, let P be a smooth point in S, let Z and C be
two irreducible curves on S that both are smooth at P and intersect transversally at P,
let a,b € [0,1) be two non-negative numbers and let 2 be an effective Q-divisor on the
surface whose support does not contain the curves C' and Z. Suppose that the log pair
(S, (1 =0)C + aZ + Q) is not log canonical at P. Put m = multp Q and suppose that
m < 1. And also assume that we have either a+ (Z -Q)p —b <1 ora+m < 1. Then
we have m > b and

(C'Q)p>

b(l—a)—b.

m_
13
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Proof: We may assume b > 0 (the case when b = 0 follows readily from . We will
use an inductive argument.

Let 7 : S — S be the blowup of the point P and let E be the exceptional curve of
7. Denote by C, Z and Q the proper transforms of C', Z and A resp. on S. Put

P:=ENC,Q=EnZ.
By construction, the log pair

(S,(1=0)C+aZ+Q+ (a+m—Db)E)

is not log canonical at some point O € E. Since either a+ (Z-Q)p—b<lora+m <1,
it is clear that (a +m —b) < 1.

Fig. 2.1: The blowup of P

We first claim that O = P and m > b. We argue by contradiction. Suppose that O
is away from P. Then we claim that O = Q. Indeed, if Q is away from both P and Q,
then the log pair (S, (a+m—0bFE+ Q) is not log canonical at O so we have

m=E-Q>(E-Qo>1,

contradicting the assumption that m < 1. So we must have O = Q. Then the log pair
(S, aZ +Q+ (a+m — b)E) is not log canonical at Q. We can apply w.s.t. both Z
14
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and F to derive

a—b+(Z-Q)p:(Z-(Q+(a+m—b)E})Q>1

and

a+m > (E-(GZ+Q))Q>1.

They contradict the assumption that either a + (Z - Q)p —b < 1lor a+m < 1. So we
must have O = P. Now applying to the pair (S, (1-0)C+Q+ (a+m— b)E) at
P, we obtain

1—b+m>(E-(1-b)C+Q)),>1,

and hence

m > b,

as claimed.

Now we will think of the log pair (S, (1 —b)C + (a +m — b)E + Q) as our new pair

(as opposed to the original pair (S, (1 —b)C' + aZ + )), and we put m = mult(£2).

Let us check whether this new pair satisfies all the conditions of Theorem [2.15]

Suppose that we have both

(a+m—0)+(E-Qp—b>1

and
(a+m—>b)+m > 1.
Then
C-QDp=m+(C-Qp>m+m>1—a+b.
Thus

b .

Meanwhile, the inequality (a +m — b) + (E - Q) — b > 1 gives

2 <

1_
P

m—>b
15



BN i Tl e e VA 798

So we derive
(C-Qp—(1—a)+b 1—a
> ;
b m—>b

and hence

(C-Q)p > mb(l—a)—b.

m —
Then we are done.

Thus we can assume that either (a4+m—b)+(F-Q)s—b < 1or (a+m—>b)+m < 1.
This forces (a +m —b) < 1 (otherwise our new log pair (S, (1 —b)C + (a+m —b)E + Q)
would be log canonical at f’) So the new pair satisfies all the conditions in Theorem
One can now blow up P and repeat the previous argument for our new pair. But
observe that, the intersection number (C - Q) p, when compared to the corresponding
intersection number (C' - Q)p of the previous pair, strictly decreases by m > b > 0. So
this blowup argument cannot be repeated infinitely times and the conclusion of Theorem
has to be true at certain stage after repeating the previous argument sufficiently
many times. By induction, we might as well assume that the theorem already holds for

(S,(1=b)C + (a+m —b)E + Q). Namely, we have 7 > b and

(C‘Q)p>

(1—(a+m—b))—b.

m—b

Or equivalently,

(C-Q)p—m> (1—(a+m—>5))—0b.

m—b

Using the fact m < m, we derive

(C'Q)p—m>

(1 (a+m—b) — b,

and hence

This completes the proof.
O

Theorem 2.16. Let S be a surface, let p be a smooth point in S, let Z and C' be two
wrreducible curves on S that both are smooth at p and intersect transversally at p, let b be
a non-negative number such that b < 1, let a be a non-negative number such that a <1,
and let Q be an effective Q-divisor on the surface whose support does not contain the

16
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curves C' and Z. Suppose that the log pair (S, (1 —b)C + aZ + Q) is not log canonical
at p. Put m = mult,Q) and suppose that m < 1. Then we have

(Z ) Q)p

(C'Q)p> (ZQ)p—b

(1—a)—0b.

Proof: We may assume that b > 0. If we have either a4+ (Z-Q),—b<lora+m <1,
then by Lemma [2.6] it is easy to check that a < 1 and b < 1. So we can apply Theorem
and the result follows immediately since we have m < (Z - Q),,.

So we may assume that we have both

a+(Z-Q),—-b>1landa+m > 1.

Then we get
(C-Q)p,>m>1—a.
So we have
b<(C-Q),—(1—a)+b,
so that

(C-)p,—(1—a)+b
; :

In the meantime, the inequality a + (Z - ), — b > 1 gives

1<

1> 1——CL
(Z ) Q)p -b
So we get
(C"Q)p—(l—a)+b> 1—a
b (Z-Q),—b
so that
(Z ) Q)p
(C-Q), > (Z-Q)p—b(l a) —b.
The proof is complete. n

The following estimate gives a better bound than the usual inversion of adjunction.

Theorem 2.17. Let S be a surface, let p be a smooth point in S, let C be an irreducible
curve on S that is smooth at p, let b be a non-negative number such that b < 1, and let
Q be an effective Q-divisor on the surface whose support does not contain the curve C'.

17
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Suppose that the log pair (S, (1 — b)C' + Q) is not log canonical at p. Put m = mult,()
and suppose that m < 1. Then we have

b> + (1 —m)b

-Q 1

Proof: Locally we may pick a general curve Z passing through p such that Z is smooth
at p and it intersects transversally with C'. Then we choose a = 0. Notice that now we
can apply Theorem to the pair (S, (1 —b)C + aZ + ). So we get

m b* + (1 —m)b

—b=1
m—>b + m—>b

(C-Q),>

Theorem 2.18. Let S be a surface, let p be a smooth point in S, let Z be an irreducible
curve on S that is smooth at p, let a be a positive number such that a < 1, and let €2
be an effective Q-divisor on the surface whose support does not contain the curve C.
Suppose that the log pair (S,aZ + Q) is not log canonical at p. Put m = mult,Q) and
suppose that m < 1. Then we have

1—a

Z-Q), >1 .
( Jp +m+a

Proof: Locally we may pick a general curve C' passing through p such that C' is smooth

at p and C' intersects transversally with Z at p. Moreover we may assume that
m = (C-Q),.

We then choose b = 1 and apply Theorem [2.16] So we get

(Z'Q)p
— (1 —a) — 1.
m>(Z-Q)p—1< a)
Then we have
(Z-Q),> 14—
P m+a

18
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2.4 Tian’s alpha invariant

As we mentioned in the Introduction [I} Tian’s a-invariant plays an important role
in the study of Kéahler-Einstein problem on Fano manifolds. The purpose of this section

is to give some general properties of the a-invaraint. Let us start with the definition.

Definition 2.19. Let (X,w) be a compact Kihler manifold. We define

a(X, [w]) =sup{a > 0] 3C, >0 s.t. / emo@swex Ay < O Ve € H(X,w)}.
X

Tian proved that, for any compact Kahler manifold, such an invariant must be
a positive number. It is direct to check that this invariant only depends on the Kahler
class [w], so the notation a(X, [w]) makes sense, which we will call the a-invariant of
(X, w).

In the following, we will always work with polarized Kahler manifolds, namely, there

is also an ample line bundle L on X and w € 27wci(L). In this case, we shall write
a(X, L) == a(X, [w]).

When L = —Kx, we will also write a(X) := a(X, —Kx) for simplicity, which will be

called the a-invariant of X. Let us also fix a smooth Hermitian metric h on L.

Definition 2.20 ( [53]). For each m > 1, we define
(X, L) = sup{A > 0 | / s[22V"w < oo, for Vs € HY(X, L™), s £ 0}
X

am(X, L) can be thought of as a finite dimensional quantization of a(X, L), and we

have the following

Theorem 2.21. ( [15], [49]) We have

a(X, L) =infa,(X,L) = lim (X, L).

m——+00

From the view of modern algebraic geometry, the quantity a,,(X, L) can also be

related to the log canonical threshold of the pair (X, L™), denoted lct,, (X, L). Here

let,, (X, L) :== msup{\ | (X, AD) is log canonical for any effective D € |L™|}
19
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And we have the following relation
am(X, L) = let (X, L).

(This can be seen from the fact that the log canonicity of an effective divisor is equivalent
to certain integrability of the local holomorphic defining function of the divisor.) In

particular, Theorem [2.21] gives the following purely algebraic definition of « invariants.

the log pair (X, \D) is log canonical
a(X,L) =supg A >0 : (2.2)
for every effective Q-divisor D ~g L

This algebraic characterization is easier to work with if one wants to compute the

a-invariant explicitly.
Example 2.22. The a-invariant of the projective plane P? is
9 1
Oé(P ,—Kp2) = —.
3
Proof: Note that —Kpz = O(3). So if we pick an arbitrary line L on P2 then
3L ~ —Kpo.
Since (P?,3\L) is log canonical if and only if A < 1/3, we obtain from (2.2)) that

Oé(IEDz, _KIP’2> <

Wl =

To show the equality, we argue by contradiction. Suppose that there exists an effective
Q-divisor D ~g —Kp2 such that the log pair (P2, %D) is not log canonical at some point
P € P2 Let us pick a general line L passing through P, which is not contained in the
support of D. Then the log pair (P?, L + %D) is also not log canonical at P. Applying
Corollary to this pair, we derive

a contradiction. ]

Example 2.23. Let S be a smooth Fano surfaces (i.e. dimS =2 and —Kg is ample).
20
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All possible values of (S, —Kg) have been computed in [11].

~

Q
—
O
|
wn
S~—
I
P
= OO O WER [ WWINWI NN — W] —

if S~TF, or K2 € {7,9},

if S=P!'xP'or KZe {56},

if K2=4,

if S is a cubic surface in P? with an Eckardt point,
if S is a cubic surface in P* without Eckardt points,
if Kz =2 and | — Kg/| has a tacnodal curve,

if Kz =2 and | — Ks/| has no tacnodal curves,

if K2=1and |— Kg| has a cuspidal curve,

if Kz =1 and |— Kg| has no cuspidal curves.

21
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Chapter 3  Stability thresholds on Fano type

manifolds

3.1 Fujita-Odaka’s invaraint

Let (X, L) be a polarized pair, where X is an n-dimensional projective manifold and
L is an ample line bundle on X. Recently, Fujita-Odaka [26] introduced an J-invariant
in the study of K-stability of Fano varieties. We begin with a general definition.

Definition 3.1. For any k > 1, we set
dy, := dimcH°(X, L*) > 0.

For any basis s, ..., sa, of H*(X, kL), let D; be the divisor cut out by s; and we consider
the Q-divisor

1 &
D=— Di)

which we call a k-basis type divisor. We set
(X, L) :={c> 0| (X,eD) is lc for any k-basis type divisor D}.
And we define the delta invariant by

(X, L) := limsup dx(X, L).

k—o0

(We remark that the limsup is actually a limit; see Theorem AJ.) If L = —Kx, then
we simply write

6<X> = 5(X7 _KX)7

which is called the §-invariant (or the stability threshold) of X.

It turns out that (X, L) and §(X, L) have the following nice relation (cf. [4])

n—+1
n

a(X,L) < 8(X,L) < (n+ 1)a(X, L). (3.1)

23
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Both a-invariant and d-invariant are particularly useful in the Fano setting, i.e.

when L = —Kx. In this case, these two invariants are closely related to the existence of
KE metrics and K-stability; see Theorem and . For instance, when a(X) > T

(3.1) implies that §(X) > 1, so Theorem shows that X is uniformly K-stable. On
the other hand, suppose that X is K-semistable, namely §(X) > 1. Then (3.1 implies

that one must have a(X) > i.e. the a-invariant of a K-semistable Fano manifold

_1
n+1’
cannot be too small.

3.2 Delta invaraint and the greatest Ricci lower bound

Throughout this section, X will be an n-dimensional Fano manifold. The purpose
of this section is to relate the d-invaraint of X to an analytic quantity called the greatest

Ricci lower bound. We begin with the following definition.

Definition 3.2 ( [46][47}[56]). We define the greatest Ricci lower bound 3(X) to be
B(X) :=sup{A >0 | 3w € 2mc;(X) such that Ric(w) > \w }.

This invariant was the topic of Tian’s article although it was not explicitly
defined there, but was first explicitly defined by Y. Rubinstein in 46| (32)], , Problem
3.1] and was later further studied by Székelyhidi [51], Li [37], Song-Wang [50], and
Cable [10]. Roughly speaking, 3(X) measures how far X is from being a Kéhler-Einstein
(KE) manifold. So it is always an interesting problem to find the value of 5(X) since it
plays an important role in the study of KE problems.

Remark 3.3. The threshold 5(X) is also closely related to the alpha invariant o(X).

For instance, we have
n+1

n

B(X) = min { a(X),1},

which can be derived using the continuity method; see @/ and also Lemma 6.2].

As conjectured by Rubinstein [46] Problem 4.1], both 3(X) and 6(X) can be used
to test K-(semi)stability of X (for the definition of K-(semi)stability, we refer the reader
to [5]). And indeed, by the work of many people, we now have the following result.

Theorem 3.4 ( [42638]). The following are equivalent.
1. X is K-semistable;
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2. B(X) =1;
3. 5(X) > 1.

The main result of this section is the following

Theorem 3.5. Let X be a Fano manifold. Then we have
A(X) = min{d(X), 1}.

This result can be thought of as a special version of the YTD correspondence, since
it relates an analytic quantity to an algebraic quantity. Note that this result was first
proved in the toric case by Blum-Jonsson , Corollary 7.19]. So it is reasonable to
believe that the same result holds in the general setting. The purpose of this section
is to give a short proof of Theorem relying on some recent developments in the
literature. (Note this result has also been proved independently in the recent work ﬂZﬂ)

For the purpose of the proof, we generalize the definition of d-invariant to Q-line

bundles.

Definition 3.6 ( ,). Let L be an ample Q-line bundle on X. For any sufficiently
. of H'(X, kL), where dy =
hO(X,kL). We can associate a Q-divisor D ~q L to this basis by

large and divisible integer k, we consider a basis s1,---Sq

1 &
D= — .= 0V,
kdk;{s }

Any D obtained in this way is called a k-basis type divisor of L. We put
dx(L) :=sup{c > 0| (X,cD) is log canonical for any k-basis type divisor D of L}.

Then we define 6(L) by

d(L) := limsup dx(L).
k

To prove Theorem one also needs to use Kéhler-Einstein edge (KEE) metric

and its corresponding thresholds as well. So we recall the following two definitions.

Definition 3.7 ( [3§]). Suppose that A € | — mKx| is a smooth divisor, where m is a
positive integer. We define

B(X,A/m) :=sup{\ > 0| I KEE metric w € 2mc;(X) s.t. Ric(w) = Aw+2mw(1-N)[A]/m }
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Definition 3.8 ( [18]). Suppose that A € | — mKx| is a smooth divisor, where m is a
positive integer. Let A € (0,1] be a rational number. Then —Kx — I;L—AA ~g —AKx is
an ample Q-line bundle. We define

1—A
1- )\ the log pair (X, —A+ cD) 15 log canonical
(X, ——A) :=supLc>0 m

m

for any k-basis type divisor D of — AKx

Moreover, we define

o(X, uA) := lim sup ;. (X, uA),
m k m

which is called the §-invariant of the log Fano pair (X, %A)

For more information about KE and KEE metrics, we refer to . Note that, by

Bertini’s theorem, for m > 1, any general divisor A € | — mKx| is smooth.

Remark 3.9. 5(X) and B(X,A/m) can be related as follows:
< B(X,A/m) < B(X). (3.2)

See ,@/for a proof (see also @/} In particular, lim B(X, A/m) = 5(X).

The thresholds 8(X, A/m) and §(X, =2 A) are the counterparts of 5(X) and 6(X)
in the log setting. They can be used to test the existence of KEE metrics and log

K-(semi)stability (see e.g. [L8[40]).

If follows immediately from the definition that

S(—AKx) > (X, 222 A). (3.3)

m
With a little more effort, one can actually prove the following
Lemma 3.10. Fiz a rational number \ € (0,1]. For each m > 1 pick a smooth divisor

A € | —mKx| and put B, := Z2A. Then we have

lim §(X, By) = 6(—AKy).

m— 00

Proof: Fix any small € > 0. If suffices to show that, for any m > 1 and sufficiently
26
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divisible £ > 1, we have
5k(_)\KX) 2 5k(X, Bm) 2 (1 — 6)5k(—)\KX)

The first inequality 0 (—AKx) > 6,(X, By,) follows immediately from Definition [3.6]and
Definition 3.8 So it remains to prove the second inequality. For this purpose, we let D
be any k-basis type divisor of —AKx. Pick any ¢ > 0 such that the log pair (X, D)
is log canonical. If then suffices to show that the log pair (X, B,, + (1 — €)cD) is log
canonical as well.

Now notice that, the log pair (X,A) is log canonical since A € | — mKx]| is a
smooth divisor. Then we can apply a trick from to show the log canonicity of
(X, By + (1 — €)eD). Indeed, suppose that the log pair (X, B,, + (1 — €)cD) is not log

canonical, then , Remark 2.1] implies that the log pair (X, 5 (1=c)e

WD) 1S not log

canonical as well. If we pick m > %, the log pair (X, cD) is then not log canonical,

contradicting our choice of c. O]
Now we are ready to prove Theorem (3.5

Proof of Theorem[3.5 Using Theorem [3.4] it is enough to assume that X is not K-
semistable. So f(X) € (0,1). Our goal is to show that §(X) = 5(X). For simplicity we
may also assume that S(X) € Q. Then we consider the ample Q-line bundle —3(X)Kx.
By Definition [3.6] it suffices to show that

o(=B(X)Kx) = 1.

First, we show that §(—5(X)Kx) > 1. For this purpose, we pick any rational
number A € (0,5(X)). Then let m be a sufficiently large integer and pick a smooth
divisor A € | — mKx|. By (3.2), we may assume that

A < BX,A/m).

Then by Definition and , Theorem 1.1], we can find a KEE metric w € 2m¢;(X)
such that
Ric(w) = Aw + 27(1 — \)[A]/m.

So the log pair (X, %A) is log K-semistable (see Corollary 1.12]). Thus by ,
27
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Corollary 4.8], we have
A—1
O(X,——A) > 1.
m

Hence by (3.3), we have §(—AKx) > 1. Letting A — 5(X), we get
I(—=B(X)Kx) > 1.

So it remains to show that 0(—5(X)Kx) < 1. We argue by contradiction. Suppose
that 0(—8(X)Kx) > 1. Then we may pick a sufficiently small rational number € > 0
such that S(X) + € < 1 (recall that §(X) < 1) and

(= (B(X) + ) Kx) > 1.

Then Lemma implies that, for any m > 1 and any smooth divisor A € | — mKx|,

we have
1—(B(X) +¢)

m

Then by , Corollary 2.11], the log pair (X , %A) is uniformly log K-stable. So

m

it follows from (see also [H9]) that, there exists a KEE metric associated to this
pair. Thus we have S(X, A/m) > B(X) + ¢, contradicting (3.2)). ]

d(X, A) > 1.

Remark 3.11. In the above argument, to prove §(—B(X)Kx) < 1, one can also arque as
follows. Suppose that §(—F(X)Kx) > 1. Then we may pick a sufficiently small rational
number € > 0 such that 3(X)+ e < 1 and §( — (B(X) + €)Kx) > 1. Then it follows
from 1@ Corollary 2.11] that, the polarized pair (X, —(B(X)+ e)KX) is K-semistable in
the adjoint sense, hence twisted K-semistable in the sense of (see ,@ Proposition
8.2]). So [20, Proposition 10] guarantees that, for some X € (8(X), B(X) + €), we can
find two Kdihler forms w,a € 2mey(X) such that

Ric(w) = Aw + (1 = N,

which also gives us a contradiction.
Now we show that, Theorem has the following consequence.

Theorem 3.12. Let X and Y be two smooth Fano manifolds. Then we have

AX xY) = min{f(X), B(Y)}.
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Note that this can be proved using analytic methods as well, since 3(X') corresponds
to the maximal existence time of the solution to the continuity method (cf. [51]). But

here we present a short algebraic proof with the help of the J-invaraint.

Proof: By definition [3.2] it is clear that

BX xY) =2 min{f(X),5(Y)}.

If B(X) = p(Y) =1, then we must have S(X x Y) = 1, so we are done. Thus we may
assume that 5(X) < B(Y) and that S(X) < 1. So in particular, S(X) = 6(X) (recall
Theorem |3.5)).

On the other hand, by Definition |3.6] it is easy to check that
(X xY) <min{d(X),s(Y)}.
Now using Theorem (3.5 we derive
AX XY) =0(X xY) <min{(X),5(Y)} = min{5(X), 3(Y)}.

This completes the proof. O

Remark 3.13. For a-invariant, it was known that ( [15, Lemma 2.29])
a(X xY) =min{a(X),a(Y)}

For §-invariant, Park-Won conjectured that ( [§3, Conjecture 1.11])
I(X xY)=min{d(X),s(Y)}.

Our Theorem [3.19 shows that this is indeed true if 5(X) or 6(Y) is no bigger than one.
The author was recently informed that this conjecture has mow been fully resolved by

Ziquan Zhuang @/
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3.3 Analytic delta invariant

Let X be a smooth Fano variety of dimension n. Suppose that w € 27w (X) is a

Kahler metric. We put
H(X,w) ={¢ € C°(X,R) | wg =w +—190¢ > 0}.

This is called the space of Kéhler potentials of (X, w).
Let us introduce several useful functionals on H(X,w). Put V = [, w".

The I-functional I,(-) is defined by
1 n—1
. 3 1 n—1—1,
I(¢) == - ;/X V=10¢ A9 N w' Awl

The J-functional J,(-) is defined by

n—1 .
,_l i+1 — 5 i n—1—i,
Jo(0) ._V;HH/X\/ 109 A9 Aw' Awl '

The Mabuchi K-energy M, () is defined by

1 We 1
M) = 5 [ Tor 2o+ 3 [ bt =) = (1= L))

These functionals are important in the study of canonical metrics and they are used
to derive a priori estimates for potential functions along the continuity method (or along
the Kéhler-Ricci flow). We refer to the survey for more details.

We recall that, in , the greatest Ricci lower bound (X)) is related to certain
properness of the K-energy. Inspired by this and by Theorem [3.5] we introduce an

analytic delta invariant.

Definition 3.14. The analytic delta invariant 5(X) is defined by
0(X) :=sup{d > 0] 3Cs5 > 0 s.t. My, > (6 — 1)(I, — J.,) — Cs}.

The Mabuchi K-energy is said to be proper if S(X ) > 1, in which case, one can
derive uniform C? estimate along the continuity method (or along the Kéhler-Ricci flow)
to show the existence of KE metrics. In some sense, the converse is also true.
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Theorem 3.15. Suppose that X does not admit non-trivial holomorphic vector
field. Then X admits a KE metric if and only if 5(X) > 1.

This can be thought of as an analytic version of the YTD correspondence.

We conjecture that §(X) = 6(X). When 6(X) < 1, this is indeed true, since
both §(X) and §(X) coincide with the greatest Ricci lower bound $(X) (cf. Theorem
and [51]). Moreover we remark that, in the recent work [§], it was proved that
§(X) > §(X) using non-Archimedean approach. It seems to the author that the reverse

direction is still missing.

31



BN e R e S A7

32



Chapter 4 Delta invariants on smooth cubic surfaces

Chapter 4 Delta invariants on smooth cubic

surfaces

In [43], Park and Won estimated d-invariants of all smooth del Pezzo surfaces, which
gives a purely algebraic proof of Tian’s work when combined with Theorem . In
this chapter, we give an alternative and more geometric approach to the same problem.
For simplicity we only focus on smooth cubic surfaces, since this is the hardest case in
to deal with in [53].

Our main result is the following
Theorem 4.1. Let S be a smooth cubic surface in P*. Then 6(S) > 2.
So Theorem immediately gives
Corollary 4.2 ( ,). All smooth cubic surfaces in P> are uniformly K -stable.

For a smooth cubic surface S, it was proved in Theorem 4.9] that

36
=

5(8) > .

The proof of Theorem is completely different from the proof of , Theorem 4.9].
Moreover, our bound 0(S) > ¢ is slightly better.

4.1 Multiplicity estimates

Let S be a smooth cubic surface in P2, and let D be a k-basis type divisor with
k> 1. The goal of this section is to bound multiplicities of the divisor D using Theorem
As in Theorem we denote by €, a small number such that ¢, — 0 as k — oo.

Lemma 4.3. Let L be a line on S. Then

)
OTdL<D) < § + €g.

Proof: Let us use assumptions and notations of Theorem with n = Idg and F' = L.
Let H be a general hyperplane section of the surface S that contains L. Then H = L+C,
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where C'is an irreducible conic. Since C? = 0, we have 7(F) = 1, so that

1! 1!
OI‘dL(D) < g / VOI(—KS — l‘L)dQ? + € = 5/ (—KS — :L‘L)2d{L’ + € = g + €
0 0

by Theorem [2.12 O

Fix a point P € S. Let 7: S — S be the blowup of this point. Denote by E; the
exceptional divisor of . Fix a point Q) € F;. Let o: S — S be the blowup of this point.
Denote by E, the exceptional curve of 0. Let n = w00 and F' = E,. Let

7(Es) = sup {x € Ry ’ n*(—Kg) — xF is pseudoeffective}.

Applying Theorem we get

1 [7(E2)
= / vol(n*(—Ks) — zE>)dx + €. (4.1)
0

multe (7*(D)) 3

N

Let Tp be the unique hyperplane section of the surface S that is singular at the
point P. Then we have the following four possibilities:
e I'p =1L+ Lo+ L3, where L, Ly, and L3 are lines such that P = L; N Ly N Lg;
o I'p =1L+ Ly+ L3, where Ly, Ly and L3 are lines such that Ls Z P = L; N Ly;
e I'p =L+ C, where L is a line and C' is a conic such that P € C'N L.

e T'p is an irreducible cubic curve.
We plan to bound the integral in (4.1)) depending on the type of the curve T and on
the position of the point () € F,. First, we deal with the cases when () is contained in

the proper transform of the curve Tr. We start with

Lemma 4.4. Suppose that Tp = Ly + Ly + L3, where Ly, Ly and L3 are lines passing
through P. Let El, Ly and Eg be the proper transforms on S of the lines Ly, Ly and L3,
respectively. Suppose that () € El N ZQ N Zg. Then

17
multg (7*(D)) < o + €.
Proof: We may assume that ) = L, N E;. Denote by El, ZQ, E3 and El the proper
transforms on S of the curves Zl, ZQ, Zg and F1, respectively. Then the intersection
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form of the curves El, 21\2, Zg and El is negative definite. Moreover, we have
01" (—Ks) ~g Ly + Lo + Ly + 3E, + 4B,

Thus, we conclude that 7(Es) = 4. Now, using Corollary we compute

2

3—%, 0<r<1,
Vol(n*(—KS) — xEQ) = W’ 1<z <2,
U 2g<a<4
Then the required result follows from (4.1J). O

Lemma 4.5. Suppose that Tp = L1 + Lo + L3, where L1, Ly and Lz are lines such that
P=LiNLy and P ¢ Ls. Let Zl and Zg be the proper transforms on S of the lines L,
and Lo, respectively. Suppose that () = Zl N Ey or ZQ N Ey. Then

49
multg (7(D)) < 77 + €.

Proof: Denote by Zl, EQ, Eg and El the proper transforms on S of the curves Ly, Lo,
L3 and E4, respectively. Then

n*(—Ks) ~Q El + EQ + Zg + QE\l + 3E2

Since the intersection form of the curves Ly, Lo, L3 and FE; is semi-negative definite, we

conclude that 7(Fy) = 3. Then, using Corollary we get

3-2, 0<w<],
VOl(ﬁ*(—KS) . .IEQ) — 20748573327 1<z< 27
%, 2<x <3
Then the required result follows from (4.1)). H

Lemma 4.6. Suppose that Tp = L + C, where L is a line, and C is an irreducible
conic. Suppose that L and C meet transversally at P. Denote by L and C the proper
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transforms on S of the curves L and C', respectively. Suppose that () = LN Ey. Then

multe (7*(D)) < g + €.

Proof: Denote by Z, C and E; the proper transforms on S of the curves L, C'and FEj,
respectively. Then

Since the intersection form of the curves E, C and El is negative definite, we conclude

that 7(Ey) = 3. Moreover, using Corollary[2.10, we get

2

3—%, 0<r<1,

vol(n*(=Ks) — xFz) = Dodema® g

43 —-12)?, T <r<g<s

Now the required assertion follows from (4.1J). n

Lemma 4.7. Suppose that Tp = L + C, where L is a line, and C' is an irreducible
conic. Suppose that L and C' meet transversally at P. Denote by L and C the proper
transforms on S of the curves L and C', respectively. Suppose that Q) = CNE,. Then

multg (7%(D)) < g + €.

Proof: Denote by E, C and El the proper transforms on S of the curves L, C and Ey,
respectively. Then

n*(=Kg) ~g L+ C + 2, + 3E,.

Since the intersection form of the curves E, C and El is negative definite, we conclude

that 7(F2) = 3. Moreover, using Corollary [2.10] we get

. 3-2, 0<z<2,
vol(n*(—Ks) — zEy) =

(3—2)* 2<z<3.

Now the required assertion follows from (4.1). O

Lemma 4.8. Suppose that Tp = L+ C, where L is a line and C' is an irreducible conic.
Suppose that L and C' meet tangentially at P. Denote by L and C the proper transforms
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on S of the curves L and C', respectively. Suppose that ) = E1 N LNC. Then

multg (7*(D)) < ) + €.

Proof: Denote by E, C and El the proper transforms on S of the curves 57 L and Ey,
respectively. Then
n*(=Ks) ~g L+ C + 2E, + 4E,.

Since the intersection form of the curves E, C and El is negative definite, we conclude

that 7(Ey) = 4. Moreover, using Corollary[2.10, we get

2

3— %, 0<xr<1,
Vol(n*(—KS) — ajEQ) = W, 1<2<2,
Wl 9ga<4
Then the required result follows from (4.1)). H

Lemma 4.9. Suppose that T is an irreducible cubic. Let C be the proper transform of

the curve C' on the surface S. Suppose that ) € C. Then

multg (7*(D)) < g + €.

Proof: Denote by C and El the proper transforms on S of the curves C and E,
respectively. Then

n*(=Kg) ~q C + 2E, + 3E,.

This gives 7(F2) = 3, because the intersection form of the curves C and Ej is negative

definite. Using Corollary we get
vol(n*(—Ks) — zE») =

Then the required result follows from (4.1)). O

Now we consider the cases when () is not contained in the proper transform of the

singular curve Tp on the surface S. We start with
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Lemma 4.10. Suppose that Tp = Ly + Ly + L3, where Ly, Ly and L3 are lines passing
through P. Let El, Eg and Eg be the proper transforms on S of the lines Ly, Ly and Lz,
respectively. Suppose that () ¢ LU Zg U Zg. Then

muth (7T*<D)) < g + €g.-

Proof: Denote by Zl, 22, 23 and E; the proper transforms on S of the curves Zl, 'Ez,
Zg and FE, respectively. Then

n*(—Ks) ~Q 2’:1 + Zg -+ Eg + 3@1 —+ 3E2

This gives 7(FEy) = 3, because the intersection form of the curves Zl, Zg, 23 and El is

negative definite. Using Corollary we get

W
|
) | 8,
(@)
N\
8
/N
\'[\D

Vol(n*(—Kg) — ng) =

Then the required result follows from (4.1]). n

In the remaining cases, the pseudoeffective threshold 7(Fy) is not (always) easy to
compute. There is a (birational) reason for this. To explain it, observe that the linear
system | — K| is free from base points and gives a morphism ¢: S — P2 Taking its

Stein factorization, we obtain a commutative diagram

S = S
WLX 5
§--- 2P

where « is a birational morphism, 3 is a double cover branched over a (possibly singular)
quartic curve, and p is a linear projection from the point P. Here, the surface S is a
(possibly singular) del Pezzo surface of degree 2. Note that the morphism « is biregular
if and only if the curve Tp is irreducible. Moreover, if Tp is reducible, then a-exceptional
curves are proper transforms of the lines on S that pass through P.

Let + be the Galois involution of the double cover 8. Then its action lifts to S.
On the other hand, this action does not always descent to a (biregular) action of the
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surface S. Nevertheless, we can always consider ¢ as a birational involution of the surface
S. This involution is known as Geiser involution. It is biregular if and only if P is an
Eckardt point of the surface. In this case, the curve E; is t-invariant. However, if P
is not an Eckardt point, then ¢(F;) is the proper transform of the (unique) irreducible
component of the curve Tp that is not a line passing through P. In both cases, there

exists a commutative diagram

where S’ is a smooth cubic surface in P2, which is isomorphic to the surface S via the
involution 7, the morphism v is the contraction of the curve ¢(F1), and 9 is a birational
map given by the linear subsystem in | —2Kg| consisting of all curves having multiplicity

at least 3 at the point P.

Let @ = v(Q) and P' = v(:(E1)). Denote by Tf, the unique hyperplane section
of the cubic surface S’ that is singular at @'. If P is not an Eckardt point and @ is
not contained in the proper transform of the curve Tp, then @)’ # P’. In this case, the
number 7(E3) can be computed using Tp,. This explains why the remaining cases are

(slightly) more complicated.

Lemma 4.11. Suppose that T'p = L1+ Lo+ L3, where L1, Ly and L3 are lines such that
P=LiNLyand P ¢ L3. Let Zl, EQ and Z3 be the proper transforms on S of the lines
Ly, Ly and L3, respectively. Suppose that Q) ¢ Zl U Zg. Then

5
multe (7*(D)) < 3 + €.
Proof: Denote by El, Eg, E3 and El the proper transforms on S of the curves Ly, Lo,

L3 and E4, respectively. Then
n*(—Ks) ~q El + EQ + E?, + 2E1 + 2FE5,

which implies that 7(E,) < 2. Using Corollary we see that

2

vol(n*(—Ks) — xEy) =3 — %
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provided that 0 < z < 2. However, we have 7(FE,) > 2, because the intersection form of
the curves El, Eg, Zg and El is not semi-negative definite. This also follows from the

fact that vol(n*(—Kgs) — 2E2) > 0.

Recall that v: S — S is the contraction of the curve Ly. We let L = v(Ly),
Ly = v(Ly) and E| = v(E). Then L}, L}, and E| are coplanar lines on 5.

Since @ € Ej, the line ] is an irreducible component of the curve Tj,. Thus, either

T7, consists of three lines, or Ty, is a union of the line £} and an irreducible conic.

Suppose that Tf, = E}+Z', where Z is an irreducible conic on S". Then Q" € E1NZ’
and Z' ~ L} + Lj, which implies that the conic Z’ does not meet the lines L} and Lj.

Denote by 7 the proper transform of the conic Z’ on the surface S. We have
. 1/ =~ =~ ~ 5
77 (—KS) ~Q §(Z + Ll + L2) + 2E1 + §E2

This implies that 7(Fs) = g, because the intersection form of the curves Z ) El, L, and
El is semi-negative definite. Using this QQ-rational equivalence and Corollary we
compute

3—2, 0<

/
&
VAN
N

Vol(n*(—KS) —a:EQ) =
5—2x, 2< < g

Thus, a direct computation and (4.1)) give

b}
It (D g_ o )
multg (7*(D)) g T <z te

which gives the required assertion.

To complete the proof, we may assume that T, = B} + M’ + N, where M’ and N’
are two lines on S’ such that Q" = E{ N M'. Then M’ + N’ ~ L} + L}, which implies
that the lines M’ and N’ do not meet the lines L} and Lf. Denote by M and N the

proper transforms on the surface S of the lines M’ and N’ , respectively.

Suppose that @)’ is also contained in the line N’. This simply means that @)’ is an
Eckardt point of the surface S’. Then

1 —_~ A~ A~ A~ A~
7 (—Ks) ~g 5(M F NI+ L2) +2E, + 3B,

This gives 7(E2) > 3. In fact, we have 7(FE5) = 3 here, because the intersection form of
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the curves M , N , Zl, EQ, El is negative definite. Using Corollary , we get

2

3— %, r < 2,

<
Vol(n*(—KS) — :1:E2) =
<

0<
(3—12)? 2<z<3.

Now, direct computations and (4.1)) give the required inequality.
To complete the proof the lemma, we have to consider the case Q' ¢ N'. Then
. l/~ ~ ~ = ~ b
77 (—Ks) ~Q §<M—|—N+L1 +L2) + 2E1 + §E2

In particular, we see that 7(Es) > g Using this Q-rational equivalence and Corollary

[2.10] we compute

2

3—%, 0<x
2<

(\V]

<2
vol(n*(—Ks) — 1Ey) = ,
T—dr+ = <

27 x

N Ot

Thus, in particular, we have 7(Fy) > g, since

vol(n*(—Ks) - 2E2) — é

As in the previous cases, we can find 7(F2) and compute vol(n*(—Kg) — xE,) for
x> g However, we can avoid doing this. Namely, note that the divisor El +oN+M
is nef and

(El YN + ]/\/[\> : (n*(—KS) - a:EQ) =6 — 2z,

so that 7(Fy) < 3. Therefore, using (4.1) and Lemma|2.13] we see that

7(E2)
mult (7*(D)) < 5/ 2 vol(n* (= Ks) — xF>) + ¢, =
0

1 /3 1 [(E)
= 5/ VOl(U*(—KS) — ng) + g/ VOl(?fk(—Ks) — $E2) + € =
0

[SI[S]

79 1 [T(F2) 79 T(Ey) -3 5
i B/g vol (i (—Ks) — k) 6 < o+ ——g—2vol (1 (=Ks) — S B2 ) e
79+T(E2)_g+ <DLl o
= —4+ —=4 < —+ —+ € ==+ €.
48 24 T IVT I A T
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This finish the proof of the lemma. ]

Lemma 4.12. Suppose that Tp = L+C, where L is a line and C' is an irreducible conic.
Denote by L and C the proper transforms on S of the curves L and C, respectively.
Suppose that Q) ¢ LUC. Then

multg (7*(D)) < g + €.

Proof: Denote by Z, C and El the proper transforms on S of the curves L, C and By,
respectively. Then
n*(=Ks) ~g L+ C + 2E, + 2E,,

so that 7(Fs) > 2. Using Corollary[2.11] we see that

x2

vol(n*(—Ks) — xF») =3 — )

provided that 0 < z < 2. Since vol(n*(—Kg) — 2E>) > 0, we see that 7(Fy) > 2.

Recall that v: S — S is the contraction of the curve C. Let L' = v(L) and
El =v(F). Then L’ is a line and Ej is a conic on S” such that P’ € L' N EJ.

First, we suppose that T, is irreducible. Denote by T\Q the proper transform of the
cubic Té on the surface S. Then 7, Q- El =0 and
To-L=E -L=1.

Since L2 = E? = —2 and T\é = —1, we see that the intersection form of the curves L,

T, o and El is negative definite. On the other hand, we have

/s = 35 5
n'(—Ks) ~q §<TQ + L) + §E1 + §E2-

This shows that 7(Es) = % Hence, using Corollary we get

2

3%, 0<z<2,
Vol(n*(—KS) — iL’Eg) = %’ 2< < 1_77’
465 —2x)?, Y <e<}
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Then a direct calculation and (4.1)) give

103 )
Ito(n*(D)) < — < = .
multg (7*(D)) 68 + € 3—|—ek
Now we suppose that T}, = ¢+ Z’, where (' is a line, and Z’ is an irreducible conic.

Denote by ? and Z the proper transforms on S of the curves ¢ and Z’ , respectively. We

get
) L/~ 5 =\ 35 5
7 (—Kg) ~ —(£+Z+L> +2E) + 2B,
2 2 2
which implies that 7(E,) > 2. Using Corollary we get
3-2,  0<z<2,
vol(n*(—Ks) — zEy) = e i
—16z+x
Bilbeis® 9y D
In particular, we have
5 1
1( (K ——E):—,
vol{(ir(=Ks) = 352) = 5

which implies that 7(Es) > g Observe that the divisor £ + 2Z + L is nef and
(Z—l— 27 + E) (" (—Ks) — xE,) =9 — 3z,

which implies that 7(E;) < 3. Thus, using (4.1]) and Lemma|2.13} we get

1 [7(E2)
multg (7*(D)) < 5/ vol(n*(—Ks) — xE>) + ¢, =
0
1 /3 1)
= g/ vol(n*(—Kg) — zEs>) + §ﬁ vol(n*(—Kg) — 2E») + ¢, =
0 3

709 1 [7(F2)
= / vol (" (= Kg)—xEy) +ep, < @4-
5

=~ 1323
709+¢(E2)—§+ L7091 89 . . 5,
= €S —+ —+¢€=—+4c¢€ = + €.
432 48 FXy32 96 KT pg TR g TR

To complete the proof of the lemma, we may assume that T¢, = ¢+ M’ + N’, where
¢'; M'" and N’ are lines such that @' € M’ N N’. Since Ff is a conic passing through @,
we conclude that (' is not contained in the line ¢’. Note that ¢’ # L', and the lines ¢,

M' and N’ do not pass through P’.
Denote by Z, M and N the proper transforms on S of the lines ¢/ , M’ and N’,
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respectively. We get
i} 1/~ o~ ~ o~ 3~ 5
7 (—Kg) ~ §(€+M+N+L) + 5B+ 5By,

which implies that 7(E;) > 2. In fact, we have 7(E,) > 2, because the intersection form
of the curves Z, M , N , L and El is not semi-negative definite. Nevertheless, we can use

Corollary to compute

2

. 3—%, 0<x<2,
VOl(n (_KS) B xEQ) B 92—562+8x2 5
R8eibe - 2<w <3,

so that, in particular, we have

V01<77*(—K5) - gE2> = %

Observe that the divisor 2/ + M + N is nef and
(2?—1— M+ ]/\\7) (" (—Ks) — 2E,) =6 — 2z,
which implies that 7(E;) < 3. Thus, using (4.1]) and Lemma|2.14} we get

1

7(E2)
5/ vol(n*(—Ks) — xE>) + ¢, =
0

/A

multe (7*(D))

1 [ 1 [T
= g/ vol(n*(—Ks) — zFs>) + 5/ vol(n*(—Kg) — 2E>) + ¢, =
0 5

2

89 1 [T(E2 . 89 2 5 . 5
= ﬁ+§/g vol(n*(—=Kg)—zEz)+e; < a+§(T(E2)—§>vol<n (—KS)—§E2> +ep =
_89+2<(E) 5)+ 89,1 5
IETI YAV VI VI T
The proof is complete. n

Lemma 4.13. Suppose that Tp is an irreducible cubic curve. Let C be its proper trans-

form on the surface S. Suppose that Q) ¢ C. Then

multe (7*(D)) < g + €.
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Proof: Denote by C and El the proper transforms on S of the curves C and Ey,
respectively. Then

n*(—KS) ~Q 6 —f— 2E1 —I— 2E2

Thus, using Corollary , we get vol(n*(—Kg)—xEy) = 3— % provided that 0 < z < 2.

Recall that v: S — S is the contraction of the curve C. Let E' = v(E;). Then E}
is an irreducible cubic curve that is singular at P’. Thus, the curve F} is smooth at the

point @', so that Ty, # Ej. One can easily check that Tj, does not contain P'.

Suppose that T, is an irreducible cubic. Denote by T, o the proper transform of the
curve T(, on the surface S. We get B2 = —2, fé =1, F - fQ =1 and

1~ 3~ 5
(=Kg) ~g =T, —-F -F
T]( s) Q2Q+2 1+2 2,

which implies that 7(F,) = 2. Using Corollary we get
vol(n*(—Ks) — 1Ey) = 2

Then (4.1)) and direct calculations give

49 )
multg (7*(D)) < 0 + e < 3 + €.

Now we suppose that Ty, = ¢’ + Z’, where ' is a line and Z’ is an irreducible conic.
Denote by ? and Z the proper transforms on S of the curves lg and Z', respectively.

~

Since the intersection form of the curves Z, Z and El is semi-negative definite, we

conclude that 7(F,) = 2. Using Corollary we get

2

3—%, 0<x

N
N

2,
vol(n*(—Ks) — zE>) =
5—2zx, 2<z<

Nt
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Hence, using (4.1]), we see that

To complete the proof, we may assume that T{, = ¢/ + M’ + N', where (', M’ and
N" are lines such that Q" € M’ N N’. Denote by Z M and N the proper transforms on
S of the lines ¢/ , M'" and N’ respectively. If ()’ is contained in the line ¢, then

/o~ —\ 3=
7 (—Kg) ~ §<€+M+N> + B +38,

and the intersection form of the curves Z M , N and El is negative definite, which implies

that 7(F2) = 3. In this case, Corollary gives
vol(n*(—Ks) - a:EQ) =

which implies the required inequality by (4.1)).

To complete the proof, we may assume that @’ is not contained in ¢'. Then the

intersection form of the curves Z, M , N and El is not semi-negative definite. Since
. 1/~ —~ = 3~ 5
7 (—Ks) ~ —(£+M+N) + 2B + 2B,
2 2 2
we conclude that 7(Ey) > g Moreover, using Corollary we get

3—2, 0

X

/AN
0

N

VOl(?’]*(—KS) — I’Eg) = 2 g1 )
z“—8x <

2 ) x <

N |t

In particular, we have
5 1
1( “(—K ——E) .
vol(n"(—Ks) o2 3

Observe that the divisor 20 + M + N is nef and

~ ~

(20+ M+ N) - (1*(—Ks) — 2E) = 6 — 2,
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which implies that 7(FEy) < 3. Thus, using (4.1]) and Lemma|2.13} we get

1 [7(E2)
multg (7*(D)) < 5/ vol(n*(—Ks) — xF>) + ¢, =
0
1 /3 1 ()
= 5/ VOl(U*(—KS) — ng) + g/ VOl(ﬁ*(—Ks) — Z‘EQ) + € =
0
79 1 [T(E2) . 79 T(Fy) -3 . 5
= 4—8+§/g vol(*(—Kg) —xEs) + €, < E—{—%ml(n (—KS)—§E2> +ep =
79+7'(E2)—g+ <79+1+ 5+
= — 4+ —= 4 g < —+ —+6 ==+ €.
48 24 PRag T4 T3 T
This completes the proof of the lemma. n

Using Corollary 2.9 and Lemmas [£.4] [4.9] [4.10] [E17) @12 F.13]

we immediately get

Corollary 4.14. We have §(S) > 2.

4.2 Proof of the main result

In this section, we prove Theorem[d.1] Let S be a smooth cubic surface. We have
to prove that 0(5) > g. Fix a positive rational number \ < g. Let D be a k-basis type
divisor. To prove Theorem , it is enough to show that, the log pair (S,\D) is log
canonical for £ > 1. Suppose that this is not the case. Then there exists a point P € S
such that (S, AD) is not log canonical at P for k > 1. Let us seek for a contradiction
using results obtained in Section 4.1

Let 7: S — S be the blowup of the point P, and let E; be the exceptional divisor
of the blow up 7. Denote by D the proper transform of D via 7. Then

Kz +AD + (Amultp(D) — 1) By ~q 7 (Ks + AD).

By Corollary the log pair (S, AD + (Amultp(D) — 1) E;) is not log canonical at some
point ) € E;. Thus, using Lemma [2.5] we see that

multg (7°(D)) = multp (D) + multg(D) > <= > (4.2)

>N
Wl ot

Let o: S — S be the blowup of the point (), and let F5 be the exceptional curve of o.
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Denote by D and El the proper transforms on S of the divisors D and E, respectively.
By Corollary[2.8] the log pair

(§, AD + (Amultp(D) — 1) Ey + (Amultp(D) + Amultg(D) — 2) Ez)

is not log canonical at some point O € Es.

Let Tp be the hyperplane section of the surface S that is singular at P. Then Tp
must be reducible. This follows from and Lemmas and

Denote by Tp the proper transform of the curve Tp on the surface S. Then Q € Tp.
This follows from and Lemmas and

In the remaining part of this section, we will deal with the following four cases:

1. Tp is a union of three lines passing through P;
2. Tp is a union of three lines and only two of them pass through P;
3. Tp is a union of line and a conic that intersect transversally at P;

4. Tp is a union of line and a conic that intersect tangentially at P.

We will treat each of them in a separate subsection. We start with

4.2.1 Case 1l

We have Tp = Ly + Ly + L3, where Ly, L, and L3 are lines passing through the
point P. We write
AD = a1L1 + &QLQ + G3L3 + Q,

where a1, as and az are nonnegative rational numbers, and Q is an effective QQ-divisor

whose support does not contain Lq, Ly or Ls. Then
Ll'Q:)\+(I1—a2—a3. (43)

Denote by Zl, Zg and Eg the proper transforms on S of the lines Ly, Ly and Ls,
respectively. We know that ) € LiUL,U Zg, so that we may assume that ) = LiNE;.
Let € be the proper transform of the divisor € on the surface S, and let m = mult ().
Then the log pair

(S.0aLi+ @+ (a1 + a2 + a5 +m — 1) 5 )

is not log canonical at the point Q).
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By Lemmald.3] we have
5
a < (5 +a A<, (4.4)

where ¢, is a small constant depending on k such that £, — 0 as k — oo. Thus, applying
Corollary 2.7} we see that

Ll‘Q—l—al—i—ag—i—a;;—l:Zy<§+(a1+a2+a3+m—1)E1> >1,

which gives L; - Q > 2 — a; — as — az. Combining this with (4.3)), we get

2\
> == (4.5)

Let m = muth(ﬁ). Then by Lemma M, we have

- 17
2a1+a2+a3+m+m<<§+ek>)\, (4.6)

where ¢ is a small constant depending on k such that ¢, — 0 as kK — oo. Then using
(4.5) and m > m, we deduce that

m<<§+%’“)A—1<1. (4.7)

Denote by El and € the proper transforms on S of the divisors L, and SNI, respec-

tively. Then the log pair
(§,alfl+§+ (a1 + as +as +m —1)E; + (2a1+a2+a3+m+m—2)E2>

is not log canonical at the point O.

We claim that O € El U El. Indeed, we have (2a; + as + a3 +m+m —2) <1 by
. Thus, if O ¢ LU El, then Corollary gives

~

m=0Q-E>(Q B),>1,

which is impossible by (4.7). Thus, we have O € LU E,.
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IfO e El, then the log pair
<§,§+ (a1 + as + as +m — 1) E; + (2a1+a2—}-a3—|—m+ﬁ1—2)E2>

is not log canonical at the point O. Then Corollary gives ay +as+azs+m+m > 2,

so that (4.5) and (4.6]) gives
17 _ A
<§+ek))\>2a1—|—a2+a3+m+m>2+a1 >3—§,

which is impossible, since A < g and €, — 0 as k — oo.

Thus, we see that O € L;. Then the log pair
<§,a121 +Q+ (20 +a2+a3+m+m—2)E2>
is not log canonical at the point O. Now, using and , we have
~ ~ ~ 10 3€k
multo <Q+ (2a1+a2+a3+m+m—2) EQ) = 2a1+astas+m—+2m—2 < <§+7))\—3 < 1,
since \ < g and k£ > 1. Thus, Lemma gives
Ll'Q+2CL1+CL2+6L3—2:E1' (Q"‘ (2@1+CL2+CL3+TTL+T7L—2)E2> > 2—&1,

so that Ly - Q4+ 3a; + as + az > 4. Using (4.3]) we get A\ + 4a; > 4. Using (4.4]), we get

29
<§ — 5k>/\ > 4,

which is impossible, since A < g and €, — 0 as k — oo.

4.2.2 Case 2

We have Tp = Ly + Ly + L3, where Ly, L, and L3 are coplanar lines such that
P=1LiNLyand P ¢ Ls. As in the previous case, we write

AD = a1L1 + CLQLQ + Q,
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where a; and as are nonnegative rational numbers, and €2 is an effective Q-divisor whose

support does not contain the lines L; and Ly. Then
Ll‘Q:)\+a1—CL2. (48)

Denote by Zl and Zg the proper transforms on S of the lines Ly and Lo, respectively.
We know that @) € 'El U ZQ, so that we may assume that @) = 'El N E,. Let Q) be the
proper transform of the divisor  on the surface S, and let m = multp(€2). Then the
log pair
(§,a1Z1 +Q+ (a1 +az+az +m— 1)E1>

is not log canonical at the point Q).

By Lemma [£.3] we have

@ < (g + €k>>\ <1, (4.9)

where ¢ is a small constant depending on k£ such that ¢, — 0 as k — oo. Thus, using

Corollary we obtain Ly - Q > 2 — a; — ay. Then, using (4.8)), we deduce

2—-A

Let m = multo(Q). By Lemma ﬁ, we have

- 49
2a1 +ays +m+m < (§+€k>)\- (4.11)

where € is a small constant depending on £ such that e, — 0 as k — oco. Thus, using

(4.10) and m < m, we deduce

~ 38 €k
m<<2—7+§>)\—1<1. (4.12)

Denote by El and O the proper transforms on S of the divisors L, and ﬁ, respec-

tively. Then the log pair
<§,alzl —F@—l- (Cll + as +m — 1)@1 -+ (2&1 +0J2+m+ﬁl—2)E2>

is not log canonical at the point O. Then 2a; + as + m +m — 2 < 1 by (4.11)). Thus,
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using (4.12)) and arguing as in Subsection we see that O € Zl U El.
ItO e El, then the log pair

(§,§+(a1+a2+m—1)E1+(2a1+a2+m+m—2)E2)

is not log canonical at the point O, so that a; +as+m+m > 2 by Corollary[2.7} Hence,
using (4.10]) and (4.11]), we get

49 - A
<ﬁ+ek))\22a1+a2+m+m>2+a1>3—§,

which is impossible, since A < g and €, — 0 as k — oo.

We see that O € Zl. Then the log pair

<§,a1z1 +§+ (2&1 +a2—|—m+m—2)E2>

is not log canonical at the point O. Now, using (4.11)) and (4.12)), we deduce

~ - _ 29 3
multO<Q—i—(2a1+a2+m+m—2)E2) =201 t+as+m+2m—2< <§+§)>\_3 <1,

because \ < g and k£ > 1. Then we may apply Lemma to get
Ly -Q+2a1—|—a2—2:f1~ (Q—f- (2a1+a2—|—m—|—77~1—2)E2) >2—(11,
so that Ly - Q + 3a; + as > 4. Using (4.8]) we get X\ + 4a; > 4. Then, by (4.9)), we have

<% —5k>)\ > 4,

which is impossible, since A < g and €, — 0 as k — oo.

4.2.3 Case 3

We have Tp = L+ C, where L is a line and C' is an irreducible conic such that they

intersect transversally at P. As in the previous cases, we write

AD = aL +bC + Q,
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where a and b are nonnegative rational numbers, and €2 is an effective Q-divisor whose

support does not contain the curves L and C. Then Lemma [4.3| gives us

a < (g Fa A<, (4.13)

where g is a small constant depending on k such that ¢, — 0 as k — co. And also, we

have
L-Q=X\+a—2b. (4.14)

Denote by L and C the proper transforms on S of the curves L and C , respectively.
We know that () € LUC. Moreover, using (4.2)) and Lemma we see that () = LNE;.

Denote by Q the proper transforms on S of the divisor Q. Let m = mult p(2). Then
the log pair
(§,ai+§z+ (a+b+m— 1)E1>

is not log canonical at Q). Since a < 1, we can apply Corollary[2.7] to this log pair and the

curve L. This gives L-Q > 2—a—b. Combining this with ([{I.14), we have A+2a—b > 2,

so that
2+b— A\ S 2—)\.

> > 4.15
a 5 5 (4.15)
Let m = muth(ﬁ). Then Lemma [4.6| gives
- 9
2a+b+m+m<(5+ek>>\, (4.16)

where € is a small constant depending on £ such that ¢, — 0 as & — oo. Thus, using

(4.15) and m < m, we deduce that

m<(%+%’“>A—1<1. (4.17)

Denote by L and Q the proper transforms on S of the divisors L and (NZ, respectively.
Then the log pair

(S.aL+Q+ (at+b+m—1)B + (2a+b+m+im—2)E,)

is not log canonical at the point O. Note that 2a +b+m +m —2 < 1 by (4.16)). Thus,

using (4.17) and arguing as in Subsection we see that O € LU Ej.
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IfO e E\l, then the log pair
<§,§+(a+b+m—1)E1+(2a+b+m+m—2)E2)

is not log canonical at O. Applying Corollary[2.7] again, we obtain a + b +m + m > 2,

so that (4.15)) and (4.16) give

<§+ek>)\>2a+b+m+ﬁ1>2—|—a>3—%,

which is impossible, since A < g and ¢ — 0 as k — oo.

We see that O € L. Then the log pair
<§,ai+§+ (2a+b+m+ﬁl—2)Eg)

is not log canonical at the point O. Now using (4.16) and (4.17), we obtain

- _ _ 12 3
multo (Q+ (2a+b+m+ i —2) By) =2a+b+m+ 2 —2 < (E+§))\—3<1,

because \ < g and €, — 0 as k — oo. Thus, applying Lemma, we get
L-Q+2a+b-1=L- (04 Qatbtmtim—2)E)>2-q

which gives L-Q + 3a + b > 4. Using (4.14]), we get A +4a > 4+ b > 4, so that (4.13)
implies that

29
<§ — €k>/\ >4,

which is impossible, since A < g and €, — 0 as k — oo.

4.2.4 Case 4

We have Tp = L+ C', where L is a line, and C' is an irreducible conic that tangents
L at the point P. We write
AD =al +bC + Q,
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where a and b are nonnegative rational numbers, and €2 is an effective Q-divisor whose

support does not contain L and C. Let m = multp(€2). Then
atb+m>1 (4.18)
by Lemma [2.5] Meanwhile, it follows from Lemma [£.3] that

a < (g +5k))\ <1, (4.19)

where ¢, is a small constant depending on k such that ¢, — 0 as £ — oco. And also, we

have
L-Q=X+a—2b. (4.20)

Denote by L and C the proper transforms on S of the curves L and C , respectively.
We know that ) = LN C. Denote by Q the proper transforms on S of the divisor Q.
Then the log pair
(S.aL+bC+ Q4 (a+b+m—1)E)

is not log canonical at the point Q). Since a < 1 by (4.19)), we may apply Corollary
to this log pair at ) with respect to the curve L. This gives

L-Q>2—a—2b.

Combining this with (4.20)), we get A + 2a > 2, so that

2— A\
a> =" (4.21)

Let 7 = multo(Q2). Then Lemma gives

1
2+ 2b +m + M = A - multo(7*(D)) < (57 —I—ek>)\. (4.22)

where € is a small constant depending on £ such that €, — 0 as & — oco. Thus, using

(4.21) and m < m, we deduce that

1
i < <§+%)A—1< 1. (4.23)
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Denote by Z, C and Q the proper transforms on S of the divisors Z, C and ﬁ,
respectively. Then the log pair

(S.0L+0C+Q+ (a+b+m—1)Ey+ (2a+2b+m+ i —2) )

is not log canonical at O. Moreover, it follows from (4.22) that 2a+2b+m+m —2 < 1.
Thus, using (4.23)) and arguing as in Subsection we see that O € LU C U E\l

If O e E\l, then the log pair
<§,§+(a+b+m—1)]§1+(2a+2b+m+m—2)E2)

is not log canonical at O. In this case, Corollary applied to this log pair (and the
curve Esy) gives a + b+ m+ m > 2, so that (4.21)) and (4.16) give

17 - A
<§+ek>)\>2a+26+m+m>2+a+b>3—5,

which is impossible, since A < g and ¢, — 0 as k — oo.

IfO e 6, then the log pair
(S.6C+Q+ 20+ 2+ m+ 7 - 2) B, )

is not log canonical at O. In this case, if we apply Corollary 2.7] to this log pair with
respect to Ey, we get b+ m > 1, so that (4.22)) gives

1
20+b+m+1< (g—i-ek))\—l.

Combining this with (4.18))), we see that a < (% + €x) A — 2, so that (4.21)) gives

43
<1_8 + €k>>\ > 3,

which is impossible, since A < g and €, — 0 as k — oo.

We see that O € L. Then the log pair

(§,QE+Q+(2a+2b+m+ﬁ”L—2)Eg>
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is not log canonical at the point O. Now using (4.22)), (4.23) and \ < g, we deduce that

- _ _ 10 3
multo (Q+ (2a+ 20+ m+7i—2) By ) =20+ 2b+m+27—2 < T+ )A-3< L.

since \ < g and £ — oo. Then we may apply Lemma to get
L-Q+20+2-2=L(Q+ (20+2+m+m-2)E)>2-q,

which gives L - Q + 3a + 2b > 4. Using (4.20]), we see that A\ + 4a > 4, so that (4.19)

gives

(% —&?k))\ > 4,

which is impossible, since A < g and €, — 0 as k — oo.

The proof of Theorem [4.1]is complete.
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Chapter 5 Delta invariants on asymptotically log Fano surfaces

Chapter 5 Delta invariants on asymptotically

log Fano surfaces

In this chapter we study d-invaraints on log Fano surfaces. We will be mainly inter-
ested in a special family of asymptotically log del Pezzo surfaces, which is conjectured to
admit Ké&hler-Einstein edge metrics (cf. ) We partially verify this conjecture from

the algebraic side, by showing that, a general element of this family is uniformly log

K-stable.

5.1 Basic set-up

Let S = P! x P!, and let C' be a smooth curve of bi-degree (1,2) in S. Then S
contains exactly two curves of bi-degree (1,0) that are tangent to C. Denote them by
Fy and F. Then each intersection Fy N C and Fo N C consists of one point. Let
Fy,...,F, be

r>7

distinct curves in S of bi-degree (1,0) that are all different from the curves Fyy and Fo.

Then each intersection F; N C consists of two points. Let P; be one of these two points.

Let 7: S — S be blow up of the points Py, ..., P,, and let C be the proper transform
of the curve C. Then
2

C?=C"—-r=4-7<0,

since we assume that » > 7. This shows that the curve C' is contained in the boundary
of the Mori cone of the surface S. Moreover, it is not hard to check that Fy, C'+ F; and
C + F; are in the boundary of the Mori cone as well.

Denote by E; the exceptional curve of the blow up 7 such that 7(E;) = P;. Simi-
larly, denote by Fy, Fi, ..., F,, F the proper transform on the surface S of the curves

Fo, Fy,...,F,.,F.. Also denote by F a general curve in the pencil |Fy|. Finally, let

L= —<K5+(1—B)C>,
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where [ is a sufficiently small positive rational number. Then
L ~q F+ 50,

which implies that L is ample for § < ﬁ. So in particular, (S, (1 — 3)C) is a log Fano
pair for sufficiently small (.

The main goal of this chapter is to show the following

Theorem 5.1. The log pair (S, (1 —5)C) is uniformly log K-stable for sufficiently small

cone angle [3.

By the recent work of Tian-Wang and Berman-Blum-Jonsson [7], this result
implies that the log pair (S, (1 — 5)C) admits Kéhler-Einstein edge metrics with cone
angle 3 along C when ( is small enough. We will prove Theorem by showing that
6(S,(1 — B)C) > 1 (cf. Theorem [L.3p.6). To this end, we first need several multiply

estimates.

5.2 Multiplicity estimates

We use the same notation as in the previous section. Suppose that
D ~q L

is any n-basis type divisor of L. with n > 1. Let Z be a smooth curve on the surface
S. We will write
D=aZ+ A,

where a > 0, A is an effective divisor and Z is not contained in the support of A. Our
goal is to estimate a from above. By Theorem [2.12] we know that
7(Z)

a< — vol(L — xZ)dx + €,

where ¢, — 0 as n — o0.

Lemma 5.2. Let Z be an irreducible curve in |F|. Then

1 B(r—4) 5(r—4)2p2
-2 8 + 96
60
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Proof: Since L ~¢ F + C and C? < 0, we have
(L, Z) =1
To find o(L, Z), we compute
(L—AZ) C=(1=NF-C+BC2=2(1—\) —B(r—4),

where A € Q. This gives

r—4

o(L,Z)=1-0 <1l=7(L,2).

Then the result follows from Theorem [2.12] Indeed, we have

1_r=4
=73 i (L—a:‘Z)de—l—;(r—ll)Q—i-en
28— (r—4) 4+ S
4B =B (r—4)

1 (r—4)p  5(r—4)p

— — 3
5 3 + % + O(B°) + €n

+€n

Lemma 5.3. Let Z be one of the w-exceptional curves. Then

a§%—@+0(62)+6n

for some constant € that depends only on the classed of L and Z in Pic(S).

Proof: Without loss of generality, we may assume that Z = EF;. Since L ~q E; + F) +
BC and F; + SC' is on the boundary of the Mori cone, we have 7(L,Z) = 1. To find
o(L,Z), observe that F' ~ E; + F, so that

L—AZ ~g (1—N\Z+ F + BC,
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where A € Q. Thus, we compute
(L—/\Z) F =B —A
Similarly, we have
(L—AZ) C=(1=NF-C+BC2=2—B(r—14) -\,

This gives o(L, Z) = (3, since [ is assumed to be sufficiently small.
Now, let us use Theorem It gives

1 1
a < —2/ vol(L — zZ)dx + €.
L2 Jo

We set

We aligned the estimate in three pieces:
1 B 7 1
a < ﬁ</ vol(L — xZ)dx + / vol(L — xZ)dx + / vol(L — zZ)dx) + €,

0 B K

e For the first piece, since L — 27 is nef for = € [0, ], we have

B B
/ vol(L — xZ)dx = / (L — x2)*dx
0 0
e For the second piece, we use Lemma [2.10 Notice that
(L—2Z)-Fy=0—ux.

So we get

vol(L —2Z) =vol(L — xZ — (z — B)F1), x > p.

In other words, to calculate the volume, we can replace the line bundle L — xZ by

L — 27 — (x — B)F; when z > . Now, observe that
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So L —xZ — (x — ) F} is nef if and only if

So we see that, L —xZ — (x — B)F} is nef if and only if

xﬁl—g(r—S):,u.

Therefore, for g < z < u, we get
vol(L —22) = (L —2Z — (z — B)F1)* = 48(1 — z) — B*(r — ).

So we have
/wvdul—xZ)::/uﬂﬂﬂ——x)—ﬂ%r—5»dm
B B

e For the third piece, we clearly have

P =)

/1 vol(L — zZ)dx < (1 — p)vol(L — pZz) = 5

Summing up the three pieces, we get

L2-(r=9B0E) 1 6

.
= 4 (r—4)p n=gt g AOF) e

Lemma 5.4. Let Z be one of the curves Fy, ..., F.. Then

1 6-
a§§+—8 Tﬁ+0(52)+en.

Proof: The proof is exactly the same as above since E; and F; are symmetric in our

calculations. 0

Lemma 5.5. Let Z be the curve C. Then

/C- 12 3
a<_+_6 +()6 —+ .
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Proof: We have
o(L,Z)=71(L,Z)=p

in this case, so by Theorem[2.12] we have

B

1
a < T2 (L —2Z)%dz + €,.
0

Simplifying, we get (this holds for any r > 1)

a<6

r—4 , 3
_54‘75 +O(5)-‘r—€n.

5.3 Proof of the main result

We fix 8 > 0, which is a sufficiently small rational number. We also fix r > 7.
We use the same notation as in the Section (.1l The main result of this section is the

following.

Theorem 5.6. One has
(S, (1—-p)C) > 1.

The proof of this theorem uses standard techniques from [11]. We fix a constant
A > 1 which is sufficiently close to 1, say

p
=14
A= 900

In this section, D will always denote a k-basis type divisor of the QQ-line bundle —Kg —
(1 — 5)C. Here we assume that k is sufficiently large.
To prove Theorem [5.6} it is enough to show that

(S,(1—=p5)C+ AD)

is log canonical for any k-basis type divisor D with &£ > 1. We argue by contradiction.
Suppose that there exists a k-basis type divisor D with k£ > 1 such that the log
pair
(S, (1 —5)C+ AD)
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is not lc at some point P € S. We will seek for a contradiction. We split the argument

into several lemmas.
Lemma 5.7. The point p is contained in CUE;U---UFE, UF,U---UF,.

Proof: If this is not the case, then let Z € |Fy| be the curve that contains p. Then Z

is irreducible and smooth. We write

AD =aZ + A.

Then by inversion of adjunction, we have

2NB=7-A>1,

which is a contradiction since \f is small. m
Lemma 5.8. The point p is contained in the curve C.

Proof: If this is not the case, then suppose that P € E;. We write

AD = aFE; + A.

By Lemma [5.3| we may assume that

a <

GV )

On the other hand, by inversion of adjunction at the point p, we have
a+\N=FE-A>1,

which is a contradiction since (5 is assumed to be sufficiently small. The same argument

works for any other F; and Fj. O

Lemma 5.9. The point p is contained in FobUFyU---UF,UE,U---UE,.

Proof: If this is not the case, then P € C'is a general point. Let Z € |Fy| be the curve

that contains p. Then Z intersects C' transversely at p. We write

AD = aZ + eC + Q.
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By our assumption, the log pair
(S, (1—=F+¢)C+aZ+9Q)
is not lc at p. By Lemma[5.2) and Lemma [5.5] we may assume that

2p
0<a< —.
<a< 3

Wl Do

, 0<e<

If we put

m = mult,(2,

then we have
m < (Z-Q), <2(\3 —e).

It is also clear that
(C-Q),<C-Q=2X\—-2a— (A3 —€)(r —4).

Now we apply Theorem [2.16| at the point p. We get

(c-Q),>

Thus we have

2A—2a— (N8 —¢€)(r—4) >

Rearranging this, we get

2= -1)+

Using € < %, we easily deduce that

(8—B—6a)(A—1)> (A — g)(r _5)8.

which is impossible for » > 6 and A =1+ 1—[50.
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Lemma 5.10. The point p is contained in Fy U F.

Proof: Suppose that this is not the case. Then without loss of generality, we may

assume that p is contained in £y U F;. We decompose AD as
AD = CLEE1 + CLFF1 + eC + Q.

We may assume that P = E; N C (the proof for P = F; N C' is exactly the same). Then

by our assumption, the log pair
(S,(1—=pF+¢C+agk +Q)

is not lc at the point p. By Lemma [5.3| and Lemma [5.5] we may assume that

2p

2
OSCLES?OSESE-

We set
m = mult, (2.

Notice that we have

)\B—€+QE—CLF:E1'QZm,
)\ﬁ—E—CLE—i‘CLF:Fl'QZO.

From these two inequalities we get
m < 2(A\6—¢€), ag —ap < A\F —€.
In the meantime, it is also clear that
(C-Q),<C-Q=2\—ag—ag— (N3 —¢)(r—4),

(B -Q), <E-Q=A—€+ag—ar <2(\F —¢).
Now we apply Theorem at the point p. We get

(El : Q)p
(E1-Q)p — (6 —¢)
67
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Then we have

2\ —ag —ap — (NG —¢€)(r—4) >

Rearranging this, we get

200 —=1)(1 —ag)p

(2_6)(>‘_1)+ (2)\—1)5—6

> (A8 —€)(r—5)— (ag — ar).
Using ag —ap < (A8 —¢€) and € < %, we easily see that

(85— 6as)A = 1) > (A= 2)(r = 6)5,

which is impossible for » > 7 and A =1+ 1—50.

With all the above lemmas combined, we may assume that
P=FnC.

We write

AD = aFy + eC + Q.

To get a contradiction for this case, here we only require r > 5. By Lemma [5.2] and

Lemma [5.5] we may assume that

0<2a<1—=, 0<e<

b 26
5 3

Note that, here we used the fact that 5 and ¢ are sufficiently small. We set
m = mult, (2.
By our assumption, the log pair
(S,(1=38+¢)C+aFy+Q)

is not Ic at p.
We let g : S — S be the blow-up of the point p, and let G be the exceptional curve
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of g. We let C, Fy and 2 be the proper transform of C, Fy and  respectively on the

surface S. Let us put

P=CNG, m=multQ.

Then by
2BA—€)—m=Fy-Q>m

we see that

m+m < 2(BA —e).

Using m < m, we then get

m < A3 —e€.

By our construction, the log pair
(S,(1=B+6C+aFy+Q+ (a+m—B+eG)

is not lc at some point () € GG. Using inversion of adjunction along the exceptional curve

G, it is easy to find that
Q=P.

Now let h: S — S be the blow up of P; and let H be the exceptional curve of h.
We let C, Fy, G and 2 be the proper transform of C, Fy, G and respectively on the

surface S. Let us set

P=CnH.

By our construction, the log pair
(S,(1=B+e)C+aly+Q+ (a+m—B+€)G+ (2a+m+m — 26 + 2¢)H)

is not lc at some point O € H. Using inversion of adjunction along the exceptional curve
H, it is easy to find that
O=P.

So we see that, the log pair

(S, (1= B4€e)C+Q+ (2a+m+m — 28+ 2)H)
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is not lc at the point P. We put

m = multh.

It is clear that

N

m < (H-Q)p <1y < (A —e).
Meanwhile, by m +m < 2(A\3 —¢€) and 2a < 1 — g, it is easy to check that

(2a+m+7~n—26+26)§1—1%.

Then we can apply Theorem at the point P. We get

Q) ( fz)ﬁ —(2a+m+m— €) — (5 —ce€
(O'Q)P>(H~Q)P—(/B—e)<1 (2a +m + 26+ 2¢)) — (B —e).
So we have
Q). M- B g g_WAN=¢9 5
CDe> 5G9 10 Y9 100y P9

Now simply using

(C-Qp<C-Q=—m—-—m<C-Q=2\—(\3—e)(r—4) <2\

we get
(A8 —¢€)
2 ——= — (B —¢).
A> ooy P
Using 0 < e < ?, we arrive at
A -3
2 3
AP -

which gives a contradiction since we chose A = 1 + 1:%0 with 3 sufficiently small. The

proof of Theorem [5.6] is complete.
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